首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
在污水生物脱氮工艺中,硝化过程是由自养硝化菌和异养硝化菌共同完成的.2类细菌的N2O生成机理及逸出量与系统中溶解氧的高低密切相关.了解硝化系统中的典型菌种自养菌Nitrosomonas europaea和异养菌Alcaligenesfaecalis生成N2O的机理是控制硝化过程中N2O逸出的理论基础,通过筛选优势菌种构建同步硝化-反硝化作用则是控制N2O逸出的新途径.  相似文献   

3.
目前污水处理过程中产生温室气体的问题已经引起普遍关注。本文通过实验室小试,研究了不同污水水质条件下A2O工艺中N2O的产生特征,以及氧化亚氮还原酶编码基因nosZ含量对N2O产生量的影响。结果表明,在A2O工艺中的各单元均有N2O产生,其中厌氧池产生量最大,约占总产生量的32%~85%;A2O工艺产生的N2O主要通过逸散进入大气,少量随二沉池出水进入到环境中。N2O的产生量与污泥中nosZ的含量成负相关,而碳源和DO对含有nosZ基因的反硝化细菌有明显的影响,低DO环境和充足的碳源能够极大的促进其含量的提高,从而显著减少N2O的产生量。  相似文献   

4.
Lu Y  Huang Y  Zou J  Zheng X 《Chemosphere》2006,65(11):1915-1924
Fertilized agricultural soils are a major anthropogenic source of atmospheric N2O. A credible national inventory of agricultural N2O emission would benefit its global strength estimate. We compiled a worldwide database of N2O emissions from fertilized fields that were consecutively measured for more than or close to one year. Both nitrogen input (N) and precipitation (P) were found to be largely responsible for temporal and spatial variabilities in annual N2O fluxes (N2O–N). Thus, we established an empirical model (N2O–N = 1.49 P + 0.0186 P · N), in which both emission factor and background emission for N2O were rectified by precipitation. In this model, annual N2O emission consists of a background emission of 1.49 P and a fertilizer-induced emission of 0.0186 P · N. We used this model to develop a spatial inventory at the 10 × 10 km scale of direct N2O emissions from agriculture in China. N2O emissions from rice paddies were separately quantified using a cropping-specific emission factor. Annual fertilizer-induced N2O emissions amounted to 198.89 Gg N2O–N in 1997, consisting of 18.50 Gg N2O–N from rice paddies and 180.39 Gg N2O–N from fertilized uplands. Annual background emissions and total emissions of N2O from agriculture were estimated to be 92.78 Gg N2O–N and 291.67 Gg N2O–N, respectively. The annual direct N2O emission accounted for 0.92% of the applied N with an uncertainty of 29%. The highest N2O fluxes occurred in East China as compared with the least fluxes in West China.  相似文献   

5.
We investigate the possibility to replace the – so-called – Tier 1 IPCC approach to estimate soil N2O emissions with stratified emissions factors that take into account both N-input and the spatial variability of the environmental conditions within the countries of the European Union, using the DNDC-Europe model. Spatial variability in model simulations is high and corresponds to the variability reported in literature for field data. Our results indicate that (a) much of the observed variability in N2O fluxes reflects the response of soils to external conditions, (b) it is likely that national inventories tend to overestimate the uncertainties in their estimated direct N2O emissions from arable soils; (c) on average over Europe, the fertilizer-induced emissions (FIE) coincide with the IPCC factors, but they display large spatial variations. Therefore, at scales of individual countries or smaller, a stratified approach considering fertilizer type, soil characteristics and climatic parameters is preferable.  相似文献   

6.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。  相似文献   

7.
利用生物膜序批式反应器(SBBR),考察不同溶解氧(DO)条件下硝化过程中N2O产生及释放过程。研究结果表明:DO浓度增大有利于控制系统中N2O的产生;DO浓度分别为(1.92±0.14)mg/L、(2.34±0.11)mg/L和(2.70±0.11)mg/L时,硝化过程中N2O释放因子(N2O总产量与NH4+-N转化量的比值)分别为5.47%、5.36%和4.77%。分析其原因主要是DO浓度的减小使DO对生物膜的穿透力降低,氧传递能力减弱后生物膜系统内易发生以N2O为产物的氨氧化细菌(AOB)反硝化反应。同时,在研究的3种不同的DO条件下,低DO运行条件更有利于SBBR实现亚硝酸盐型同步硝化反硝化。  相似文献   

8.
Environmental Science and Pollution Research - The net greenhouse gas (NGHG) emissions and net greenhouse gas intensity (NGHGI) were investigated via the determination of nitrous oxide (N2O)...  相似文献   

9.
采用敞开式SBR,分别研究曝气量为20、40、60和80 L·h-1工况下,短程硝化过程中溶解态N2O的逸出规律及N2O总产量。研究结果表明:曝气过程中溶解态N2O释放速率与曝气量及溶解态N2O浓度正相关,随着曝气量的增大,N2O释放速率-溶解态N2O浓度变化系数分别为0.001 5、0.002 4、0.003 5和0.004 3 s-1;在各种曝气量下的亚硝化过程中,溶解态N2O浓度呈先增加后减少现象变化;短程硝化反应时间随曝气量的增长而明显缩短;在亚硝化反应过程中溶解态N2O最大值及N2O总产量随着曝气量的增大而明显减小;曝气量由低到高,亚硝化率逐步降低,分别为99.6%、94.9%、92.2%和85.5%,N2O总产量分别为21.3、9.4、6.8和3.7 mg·L-1。低曝气量(20 L·h-1)下,N2O的产量远高于高曝气量(80 L·h-1)下的产量。中等强度曝气量(40 L·h-1、60 L·h-1)下,亚硝化过程既可以维持较高的亚硝化率,又可以有效地减少N2O总产量。  相似文献   

10.
Twenty-two long-term measurements of direct N2O emissions from soils in an intensive agricultural area were used for the validation of the process-based DNDC model (version 8.3P). Model simulations were evaluated for temporal patterns of N2O, NH4+, NO3 and water-filled pore space (WFPS) and total N2O emissions. Several soil and crop input parameter adjustments to the model were evaluated but only the recalculation of the WFPS at wilting point and at field capacity, using pedotransfer functions, resulted in a clear improvement of the simulated variables (WFPS in all cases, N2O in some cases). Therefore, only this adjustment was made to DNDC 8.3P. This change, however, resulted for some cases (both cropland and grassland) in retardation of nitrate leaching and to a lesser extent of NH4+ to the deeper soil layers. The goodness of fit of the simulated temporal pattern of N2O varied considerably between sites. The total simulated N2O emissions from cropland showed a good agreement with the measurements, although there was a systematic overestimation of 7.4 kg N2O-N ha−1. Grassland soils, in contrast, gave a low agreement between total simulated and measured N2O losses. On the basis of all measured data a regional emission factor of 3.16 with a 95% confidence interval of −0.89 to 7.21 could be calculated. DNDC simulations resulted in an emission factor of 6.49 with a 95% confidence interval of 4.04–8.93. The overall outcome of the N2O emission measurements and DNDC simulations were compared with several empirical regression models, which may be applicable for a temperate climate system. All of the tested regression models showed reliable results up to a N2O emission of 10 kg N2O-N ha−1. Higher emissions, however, were systematically underestimated. Though DNDC both under- and overestimated specific sites, the general agreement, over the whole range between measurements and simulations of total N2O losses (simulations=0.82×meas.+6.2), was better than for the different regression models.  相似文献   

11.
采用序批式活性污泥反应器(SBR),在富集亚硝态氮氧化菌(NOB)的基础上,考察了DO对连续进水模式下硝化过程中N2O减量化的影响.结果表明,在污泥氨氧化菌(AOB)和NOB的比耗氧速率(SOUR)分别为(2.36±0.31)、(7.62±0.43)mg/(L·h)条件下,不外加碳源进行小试实验,氨氮均小于1.0mg/...  相似文献   

12.
Wang Y  Xue M  Zheng X  Ji B  Du R  Wang Y 《Chemosphere》2005,58(2):205-215
The fluxes of N2O emission from and CH4 uptake by the typical semi-arid grasslands in the Inner Mongolia, China were measured in 1998-1999. Three steppes, i.e. the ungrazed Leymus chinensis (LC), the moderately grazed Leymus chinensis (LC) and the ungrazed Stipa grandis (SG), were investigated, at a measurement frequency of once per week in the growing seasons and once per month in the non-growing seasons of the LC steppes. In addition, four diurnal-cycles of the growing seasons of the LC steppes, each in an individual stage of grass growth, were measured. The investigated steppes play a role of source for the atmospheric N2O and sink for the atmospheric CH4, with a N2O emission flux of 0.06-0.21 kg N ha(-1) yr(-1) and a CH4 uptake flux of 1.8-2.3 kg C ha(-1) yr(-1). Soil moisture primarily and positively regulates the spatial and seasonal variability of N2O emission. The usual difference in soil moisture among various semi-arid steppes does not lead to significantly different CH4 uptake intensities. Soil moisture, however, negatively regulates the seasonal variability in CH4 uptake. Soil temperature of the most top layer might be the primary driving factor for CH4 uptake when soil moisture is relatively low. The annual net emission of N2O and CH4 from the ungrazed LC steppe, the moderately grazed LC steppe and the ungrazed SG steppe is at a CO2 equivalent rate of 7.7, 0.8 and -7.5 kg CO2-C ha(-1) yr(-1), respectively, which is at an ignorable level. This implies that the role of the semi-arid grasslands in the atmospheric greenhouse effect in terms of net emission of greenhouse gases (CO2, CH4 and N2O) may exclusively depend upon the net exchange of net ecosystem CO2 exchange.  相似文献   

13.
一台气相色谱仪同时测定陆地生态系统CO2、CH4和N2O排放   总被引:3,自引:0,他引:3  
通过对气相色谱仪进样、分析气路和阀驱动系统的改造 ,同一台色谱仪可以同时检测空气样品中的CO2 、CH4和N2 O。测试结果表明 ,仪器的灵敏度、分辨率和精密度均很高 ,线性范围符合要求 ;仪器系统能够在野外实验室长期稳定运转 ,可方便用于测定陆地生态系统CO2 、CH4和N2 O排放 ,能快速、准确、可靠地获取观测数据。  相似文献   

14.
Environmental Science and Pollution Research - Nitrous oxide (N2O) is a strong greenhouse gas, and it is of great significance for N2O reduction to study the effects of biochar on its production...  相似文献   

15.
Nitrophenols are present in the atmospheric gas phase and in cloud and rainwater. Their formation via aqueous-phase reactions of phenol with the nitronium ion, NO2+, arising from N2O5 and ClNO2 partitioning into the aqueous phase, has been proposed but not verified experimentally. Here, we demonstrate for the first time that gaseous N2O5 and ClNO2 partitioning into dilute aqueous solutions of phenol yields 2- and 4-nitrophenol (and 4-nitrosophenol), but no dinitrophenol isomers. The rate of nitration does not vary significantly between 5 and 20 °C, presumably because of opposing temperature dependences in Henry's law partitioning and reaction rate coefficients. The rate coefficient for reaction of NO2+ with phenol could not be directly quantified but is evidently large enough for this reaction to compete effectively with the reaction between NO2+ and water and to provide a feasible route to nitrophenol production in the atmosphere.  相似文献   

16.
进水氨氮负荷是污水生物脱氮过程中N2O释放的重要影响因素。在稳定运行的序列间歇式活性污泥反应器(SBR)内,考察了进水氨氮负荷对污水生物脱氮过程中N2O释放速率、累积释放量和转化率的影响。结果显示,相比于缺氧段,进水氨氮负荷的增加对好氧段N2O的释放有较大影响,且N2O的释放速率、累积释放量和转化率均随进水氨氮负荷的增加而增大。当进水氨氮负荷从45.6g/(m3·d)增加到78.6g/(m3·d)时,系统的总N2O累积释放量和总N2O转化率增加并不明显,仅增加3.95mg、0.99百分点;而当进水氨氮负荷从78.6g/(m3·d)增加到117.6g/(m3·d)时,系统的总N2O累积释放量和总N2O转化率分别增加了25.24mg、4.49百分点。因此,在实际污水处理过程中,当进水氨氮负荷偏高(117.6g/(m3·d))时,系统的N2O释放量可能大幅增加,需要采取减少进水氨氮负荷的方法来避免N2O释放。  相似文献   

17.
通过调控进水NO2--N浓度分别为0、25、50和100 mg·L-1,研究不同初始NO2--N浓度对CANON工艺脱氮效果和N2O释放的影响。结果表明:SBBR中,初始NO2--N浓度分别为0、25、50和100 mg·L-1时,TN去除率分别达到81.65%、89.09%,87.75%和88.39%;对应的N2O释放率分别为7.03%、7.93%、10.21%和11.94%;前1/2周期内N2O释放量分别占总释放量的46%、53%、68%和75%。通过分析可知,较高初始NO2--N浓度,可以增加TN去除率,但是会刺激CANON工艺中N2O释放量的增加。  相似文献   

18.
Environmental Science and Pollution Research - Production of the greenhouse gas nitrous oxide (N2O) from the completely autotrophic nitrogen removal over nitrite (CANON) process is of growing...  相似文献   

19.
Tsai WT  Chyan JM 《Chemosphere》2006,63(1):22-30
Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.  相似文献   

20.
Dinitrogen pentoxide (N2O5), which is present in equilibrium with NO3 radicals and NO2, has been recognized for some time as an intermediate in the NOx chemistry of night-time atmospheres. However, until the advent of long pathlength spectroscopic techniques for the measurement of atmospheric NO3 radical concentrations, no reliable method for estimating N2O5 concentrations has been available. We have calculated maximum night-time N2O5 concentrations from the available experimentally determined concentrations of the NO3 radical and NO2 in the U.S. and Germany, and find that N2O5 concentrations as high as ~ 15 ppb can occur. We have also estimated removal rates for N2O5 and for NO3 radicals during these nights. From data obtained under conditions devoid of point sources of NOx, upper limit estimates of the homogeneous rate constant for the reaction of N2O5 with water vapor are obtained, leading to the conclusion that the homogeneous gas phase rate constant for this reaction is ⩽ 1 × 10−21 cm3 molecule−1 s−1 at 298 K, consistent with recent environmental chamber data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号