首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gas–particle interactions of low-molecular-weight dicarboxylic acids were studied at a coastal Arctic site during the summer. Size segregated measurements with a Berner low-pressure impactor displayed up to four modes for ionic compounds: an Aitken mode, an accumulation mode, and two supermicron modes. The lower supermicron mode was ascribed to sea-salt, whereas the upper mode consisted mostly of species associated with continental particles. All four modes could be identified for oxalic acid, with the lower supermicron mode being the dominant. Malonic acid displayed a supermicron mode but was not found in the submicron size range. Succinic acid had an accumulation mode and, in a few samples, a supermicron mode. Glutaric acid displayed sometimes and accumulation mode, sometimes a supermicron mode, and occasionally both. The most probable formation pathway for submicron oxalic and glutaric acid was condensation from the gas phase, even though production in cloud droplets cannot be ruled out either. A slightly different formation pathway may have been important for submicron succinic acid production. Supermicron oxalic acid was probably formed by condensation from the gas-phase, by heterogeneous reactions occurring on the surface of pre-existing sea-salt and continental particles, or in cloud droplets. A larger mass median diameter for supermicron malonic and glutaric acid might be indicative of liquid-phase production in aqueous sea-salt particles. Evidence on possibly substantial sampling artifacts related to measuring dicarboxylic acids using filters were also obtained.  相似文献   

2.
Traffic-related aerosol particles are ubiquitous in the urban atmosphere. As they are produced at ground level, they can also cause adverse health effects to urban dwellers. However, knowledge of the formation, transformation and chemically resolved size distribution of urban ultrafine particles is incomplete. Thus, more of these measurements are needed for better assessment of ambient air quality and its potential health effects. The particle number concentration, aerosol black carbon (BC) concentration and size distribution of traffic-related aerosols were measured near two major roads in Kuopio, Finland, from 16 June to 5 July, 2004. Furthermore, the properties of roadside aerosol particles were examined with the Tandem Differential Mobility Analyzer technique (TDMA). A suite of TDMA instruments relying on water (hygroscopic TDMA) and ethanol (organic TDMA) condensation as well as heating (volatility TDMA) were deployed to study the composition of the nucleation and Aitken mode particles (Dp = 10–50 nm) formed from vehicle exhaust. The results show that a simple three-component model was able to reproduce characteristic insoluble, organic and water-soluble volume fractions. Insoluble constituents were dominant in the Aitken mode particles, whereas organic compounds dominated the nucleation mode sizes. On average, only a small volume fraction was water-soluble, but a clear external mixing was observed particularly when enough time was allowed after the tail pipe emissions. The contribution of the insoluble material was seen to increase as a function of particle size, being typically less than 10% at 10 nm and between 20 and 50% at 50 nm, in contrast to the organic fraction, which decreased from about 80% at nucleation mode size range to 50–60% at 50 nm.  相似文献   

3.
Under the auspices of Project METROMEX, studies of visibility de-teoration downwind of St. Louis were conducted during July-August 1974-1975. Estimates of horizontal visual range, standard meteorological data, and aerosol characteristics within the mixing layer were acquired upwind, over, and downwind of the metropolitan area by means of airborne transects. Aerosol number, surface, and volume distributions for particles between 0.025-2.5 µm were generated from the airborne measurement of Aitken nucleus concentrations, cloud condensation nuclei, and aerosols detected in situ with optical probes. Visibility reduction amounting to 50% of prevailing regional upwind visibilities consistently occurs at a distance corresponding to 2-3 hours travel time downwind for an air parcel moving with the mean transport wind. The regions of visibility minimum do not coincide with locations of maximum Aitken nucleus concentrations, but rather correspond in space and time to increased values of cloud condensation nuclei and increased numbers of particles in the 0.1-2.5 µm diameter range. Comparisons of observed aerosol evolution with similar laboratory studies suggest that most of the light scattering aerosols are of secondary origin.  相似文献   

4.
Wang G  Huang L  Gao S  Gao S  Wang L 《Chemosphere》2002,48(7):689-695
Measurement of PM10 and PM2.5 was carried out at six sites of Nanjing, China in the period of February-May 2001. The pH and conductivity of water-soluble matter of PM10 and PM2.5 were determined, and the samples were analyzed for total carbon (TC), organic carbon (OC) and inorganic carbon (IC) of the water-soluble fraction. The distribution of aerosol mass concentration in size was also measured at one site SB by a nine-stage impactor followed to assess the pulmonary deposition of particles in different tracts of the human respiratory system. Compared with National Ambient Air Quality Standard (NAAQS) of the USA, the level of PM10 and PM2.5 in Nanjing was much higher. Especially for site SY, the average particle mass concentrations (774.5 micrograms/m3 for PM10 and 481.4 micrograms/m3 for PM2.5) were more than five times the NAAQS standard. At site SB aerosol mass distribution in size had shown the similar characteristics with accumulation (Dp < 1 micron) and coarse (Dp > 1 micron) modes. More than 70% of total suspended particles is of a size that they are deposited in the respiratory tract below trachea, whereas about 22% of the mass is respirable and will reach the alveoli. Water-soluble fractions of PM10 and PM2.5 in Nanjing are acidic, and the pH of PM2.5 is lower than that of PM10. OC makes up the majority of TC and accounts for 3-14% of mass concentration of PM10 and/or PM2.5, while IC only accounts for 0.1-0.5% of PM10 and/or PM2.5 mass.  相似文献   

5.
In the frame of the MIUR-AEROCLOUDS project (Study of Direct and Indirect Aerosol Effects on Climate), night-time and daytime size-segregated aerosol samples were collected concurrently at five different sites (near-city, urban, rural, marine and mountain background sites). The paper reports on the daily evolution of the main aerosol chemical characteristics as a function of particle size in different environments over the Italian Peninsula, spanning from the Po Valley to the south Tyrrhenian coast.Two 4-day intensive observation periods (IOPs) were undertaken in July 2007 and February 2008, under meteorological conditions typical of the summer and winter climate for Italy.In the summer IOP, under stable atmospheric conditions, at the low-altitude continental sites the diurnal evolution of the planetary boundary layer (PBL), induces an atmospheric dilution effect driving the particulate matter (PM) concentrations, while, at the mountain site, it determines the upward motion of polluted air masses from the Po Valley PBL in daytime.The fine fraction was dominated by ammonium salts and carbonaceous matter (water-soluble organic matter, WSOM, and water-insoluble carbonaceous matter, WINCM). High concentrations of ammonium sulphate and WSOM due to enhanced photochemical activity constituted the background aerosol composition over the whole country, whereas, ammonium nitrate and WINCM were more associated to local emissions (e.g. urban site with concentrations peaking in the finest size range due to strong local traffic-related sources of ultrafine particles).During the winter IOP in the Po Valley, the shallow PBL depths and low wind velocity, especially at night, favoured the condensation of semi-volatile species (i.e. organic matter and ammonium nitrate), causing the high fine PM concentration observed at ground level.  相似文献   

6.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

7.
The water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process.  相似文献   

8.
This study measured ultrafine particle (UFP) levels and their size distributions in the Hsuehshan tunnel from August 12 to 19, 2009, using a Fast Mobility Particle Sizer. Measurement results demonstrate that traffic volume, the slope of the tunnel (downhill or uphill) and the ventilation system affected UFP levels inside the tunnel. Average UFP levels were about 1.0 × 105–3.0 × 105 particles cm?3 at normal traffic volume. A traffic jam in the tunnel could raise UFP levels to over 1.0 × 106 particles cm?3. UFP levels at the uphill bore were significantly higher than those at the downhill bore due to high UFP levels exhausted from vehicles going uphill at high engine load conditions. UFP levels eventually diluted 10–50% with fresh air from tunnel air shafts. Gas-to-particle condensation conversion markedly produced nucleation mode particles at the tunnel entrance section. Observations also showed Aitken mode particles markedly formed by coagulation growth of nucleation mode particles in the tunnel middle section and exit section. That is, the particle size distributions changed significantly inside the tunnel. Measurement results suggest that particles in the Aitken mode in the long tunnel governed UFP levels.  相似文献   

9.
Individual aerosol particles were collected on three days with different meteorological conditions in June 2000 in the urban atmosphere of Tsukuba, Japan. The samples collected with an electrostatic aerosol sampler (EAS) were examined by electron microscopy. The mixing properties of submicrometer aerosol particles of 0.02–0.2 μm radius were studied using the dialysis (extraction) of water-soluble material. Atmospheric aerosol particles were classified into four types with respect to the mixtures of water-soluble and water-insoluble material. The proportions of particles with water-soluble material (hygroscopic particles) ranged from 20% to 80% in the whole radius range and tended to increase with increasing radius. Moreover, by the morphological appearance, soot-containing particles were classified into two types, i.e., externally mixed soot-particles and internally mixed soot-particles. The number fractions of internally mixed soot-particles increased with increasing radius. It is found that the volume fraction of water-soluble material (ε) for the internally mixed soot-particles increased with increasing radius. In a “polluted” case, the sample showed a dominant number fraction (75%) of internally mixed soot-particles in the larger radius range of 0.1–0.2 μm.  相似文献   

10.
A fast and efficient method for simulating the evolution of internally mixed multicomponent particle size distributions for aerosol coagulation and droplet coalescence is developed. The technique is based upon a bin-wise sectionalization of the particle mass domain and by imposing the condition of mass conservation for each component. The distribution of each species as a function of the total particle mass is represented in each mass bin as a two-parameter exponential function. Particles of a given mass are assumed to be internally homogeneously mixed. The method is shown to be numerically stable for a wide range of time steps. The numerical solution is compared with both analytical results and results from other well-accepted numerical schemes. This comparison reveals that the proposed technique offers the advantage of being fast and accurate, even for coarse spectral resolution. The method is computationally attractive and easily allows the treatment of ten or more different chemical species in a collisionally evolving particle size distribution. The applicability of the method is demonstrated with several examples: Coalescence growth of multicomponent cloud droplet spectra, coagulation of measured multi-species aerosol particle size distributions, and the simulation of the accumulation mode due to a source of small aerosol particles. The technique is ideally suited for modelling the interaction of microphysics and chemistry in a size-bin resolving aerosol or cloud model.  相似文献   

11.
Chemical characterization to determine the organic and nitrogen fractions was performed on cloud water samples collected in a mountaintop site in Puerto Rico. Cloud water samples showed average concentrations of 1.09 mg L?1 of total organic carbon (TOC), of 0.85 mg L?1 for dissolved organic carbon (DOC) and of and 1.25 mg L?1 for total nitrogen (TN). Concentrations of organic nitrogen (ON) changed with the origin of the air mass. Changes in their concentrations were observed during periods under the influence of African dust (AD). The ON/TN ratios were 0.26 for the clean and 0.35 for the AD periods. Average concentrations of all these species were similar to those found in remote environments with no anthropogenic contribution. In the AD period, for cloud water the concentrations of TOC were 4 times higher and TN were 3 times higher than during periods of clean air masses associated with the trade winds. These results suggest that a significant fraction of TOC and TN in cloud and rainwater is associated to airborne particulate matter present in dust. Functional groups were identified using proton nuclear magnetic resonance (1H NMR) spectroscopy. This characterization led to the conclusion that water-soluble organic compounds in these samples are mainly aliphatic oxygenated compounds, with a small amount of aromatics. The ion chromatography results showed that the ionic species were predominantly of marine origin, for air masses with and without African dust influence, with cloud water concentrations of NO3? and NH4+ much lower than from polluted areas in the US. An increase of such species as SO42?, Cl?, Mg2+, K+ and Ca2+ was seen when air masses originated from northwest Africa. The changes in the chemical composition and physical properties of clouds associated with these different types of aerosol particles could affect on cloud formation and processes.  相似文献   

12.
A review of the physical characteristics of sulfur-containing aerosols, with respect to size distribution of the physical distributions, sulfur distributions, distribution modal characteristics, nuclei formation rates, aerosol growth characteristics, and in situ measurement, has been made.Physical size distributions can be characterized well by a trimodal model consisting of three additive lognormal distributions.When atmospheric physical aerosol size distributions are characterized by the trimodal model, the following typical modal parameters are observed:1. Nuclei mode – geometric mean size by volume, DGVn, from 0.015 to 0.04 μm. σgn=1.6, nucler mode volumes from 0.0005 over the remote oceans to 9 μm3 cm−3 on an urban freeway.2. Accumulation mode – geometric mean size by volume, DGVa, from 0.15 to 0.5 μm, σga=1.6–2.2 and mode volume concentrations from 1 for very clean marine or continental backgrounds to as high as 300 μm3 cm−3 under very polluted conditions in urban areas.3. Coarse particle mode – geometric mean size by volume, DGVc, from 5 to 30 μm, σgn=2–3, and mode volume concentrations from 2 to 1000 μm3 cm−3.It has also been concluded that the fine particles (Dp<2 μm) are essentially independent in formation, transformation and removal from the coarse particles (Dp>2 μm).Modal characterization of impactor-measured sulfate size distributions from the literature shows that the sulfate is nearly all in the accumulation mode and has the same size distribution as the physical accumulation mode distribution.Average sulfate aerodynamic geometric mean dia. was found to be 0.48±0.1 μm (0.37±0.1 μm vol. dia.) and σg=2.00±0.29. Concentrations range from a low of about 0.04 μg m−3 over the remote oceans to over 8 μg m−3 under polluted conditions over the continents.Review of the data on nucleation in smog chambers and in the atmosphere suggests that when SO2, is present, SO2-to-aerosol conversion dominates the Aitken nuclei count and, indirectly, through coagulation and condensation, the accumulation mode size and concentration. There are indications that nucleation is ubiquitous in the atmosphere, ranging from values as low as 2 cm−3 h−1 over the clean remote oceans to a high of 6×106 cm−3 h−1 in a power plant plume under sunny conditions.There is considerable theoretical and experimental evidence that even if most of the mass for the condensational growth of the accumulation mode comes from hydrocarbon conversion, sulfur conversion provides most of the nuclei.  相似文献   

13.
Size-resolved aerosol particle samples in the size range 0.1–10 μm aerodynamic diameter were collected in the years 2003 and 2004 at an urban background station in Mainz, Germany. Size, morphology, chemical composition and mixing state of more than 5400 individual particles of 7 selected sampling days were analyzed in detail by scanning electron microscopy and energy-dispersive X-ray microanalysis. In addition, transmission electron microscopy, aerosol mass spectrometry and atomic force microscopy were applied to obtain detailed information about the mixing state of the particles. The fine particle fraction (diameter<1 μm) is always dominated by complex secondary aerosol particles (⩾90% by number) independent from air mass origin. These particles are complex internal mixtures of ammonium and sodium sulfates, nitrates, and organic material. Between 20% and 40% of the complex secondary aerosol particles contain soot inclusions. The composition of the coarse particle fraction (>1 μm diameter) is strongly dependant on air mass history with variable abundances of complex secondary aerosol particles, aged sea salt, silicates, silicate mixtures, calcium sulfates, calcium sulfate/carbonate mixtures, calcium nitrate/carbonate mixtures, biological particles, and external soot.The dominance of complex secondary aerosol particles shows that reduction of the precursor gases is a major goal for successful reduction strategies for PM10.  相似文献   

14.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

15.
This study investigated water-soluble ions in the sized particles (particularly nano (PM(0.01-0.056))/ultrafine (PM(0.01-0.1))) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO(3)(-) was higher than that of SO(4)(2-) in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions.  相似文献   

16.
Some studies have reported that small submicron atmospheric particles are more acidic than large submicron particles; other studies demonstrated a reversed trend. In this study, the size dependence of in situ pH in submicron particles in Hong Kong was investigated. The equivalent ratios of [NH4+]measured to [SO42−]measured in submicron particles were found to be generally less than unity and size dependent, suggesting the possibility of incomplete gas–aerosol equilibrium. The Aerosol Inorganic Model-II (AIM-II) model using measured ionic compositions with the gas–aerosol partitioning disabled was used to estimate the in situ pH in different sized particles. The estimated in situ pH of different sized submicron atmospheric particles was between −2.5 and 1.5 and it generally decreases with increasing submicron particle size. At such low in situ pH, the estimated HSO4 equivalent concentrations were 3.2 times (on average) of those of H+ in different sized particles. The trends of the size dependence of the [NH4+]measured to [SO42−]measured ratio and pH under different regimes of relative humidity are discussed.  相似文献   

17.
Physical and optical properties of biomass burning aerosols in Northeastern region, India analyzed based on measurements made during February 2002. Large spatial extent of Northeastern Region moist tropical to moist sub-tropical forests in India have high frequency of burning in annual dry seasons. Characterization of resultant trace gases and aerosols from biomass burning is important for the atmospheric radiative process. Aerosol optical depth (AOD) observed to be high during burning period compared to pre- and post-burning days. Peak period of biomass burning is highly correlated with measured AOD and total columnar water vapor. Size distribution of aerosols showed bimodal size distribution during burning day and unimodal size distribution during pre- and post-burning days. Size distribution retrievals from biomass burning aerosols show dominance of accumulation mode particles. Weighted mean radius is high (0.22 microm) during burning period. Columnar content of aerosols observed to be high during burning period in addition to the drastic reduction of visibility. During the burning day Anderson sampler measurements showed dominance of accumulation mode particles. The diurnal averaged values of surface shortwave aerosol radiative forcing af biomass burning aerosols varies from -59 to -87 Wm(-2) on different days. Measured and modeled solar irradiances are also discussed in the paper.  相似文献   

18.
Airborne measurements of the growth of the marine accumulation mode after multiple cycles through stratocumulus cloud are presented. The nss-sulphate cloud residual mode was log-normal in spectral shape and it’s mode radius was observed to progressively increase in size from 0.78 to 0.94 μm over 155 min of air parcel evolution through the cloudy marine boundary layer. The primary reason for this observed growth was thought to result from aqueous phase oxidation of SO2 to aerosol sulphate in activated cloud drops. An aqueous phase aerosol–cloud-chemistry model was used to simulate this case study of aerosol growth and was able to closely reproduce the observed growth. The model simulations illustrate that aqueous phase oxidation of SO2 in cloud droplets was able to provide enough additional sulphate mass to increase the size of activated aerosol. During a typical cloud cycle simulation, ≈4.6 nmoles kg-1air (0.44 μg m-3) of sulphate mass was produced with ≈70% of sulphate production occurring in cloud droplets activated upon sea-salt nuclei and ≈30% occurring upon nss-sulphate nuclei, even though sea-salt nuclei contributed less than 15% to the activated droplet population. The high fraction of nss-sulphate mass internally mixed with sea-salt aerosol suggests that aqueous phase oxidation of SO2 in cloud droplets activated upon sea-salt nuclei is the dominant nss-sulphate formation mechanism and that sea-salt aerosol provides the primary chemical sink for SO2 in the cloudy marine boundary layer.  相似文献   

19.
Secondary organic aerosol (SOA) formation is enhanced on acidic seed particles; SOA also forms during cloud processing reactions where acidic sulfate is prevalent. Recently several studies have focused on the identification of organosulfates in atmospheric aerosols or smog chamber experiments, and upon the mechanism of formation for these products. We identify several organosulfate products formed during the laboratory OH radical oxidation of dilute aqueous glycolaldehyde in the presence of sulfuric acid. We propose a radical–radical reaction mechanism as being consistent with formation of these products under our experimental conditions. Using a kinetics model we estimate that organosulfates account for less than 1% of organic matter formed from these precursors during cloud processing. However, in wet acidic aerosols, where precursors are highly concentrated and acidic sulfate makes up close to half of the aerosol mass, this radical–radical reaction could account for significant organosulfate production.  相似文献   

20.
An apparatus for measuring the scattering phase function and linear polarization of aerosol particles has been developed. The apparatus uses an elliptical mirror and CCD camera to image the full angular scattering range simultaneously. An in-line aerodynamic particle sizer (APS) in the particle flow stream provides for the simultaneous measurement of the aerosol particle size distribution. This apparatus allows for a comparison of measured optical properties with theoretical model calculations based on the measured aerosol size distribution. The system was calibrated and tested using monodisperse polystyrene latex (PSL) spheres and with ammonium sulfate (AS) aerosol. We have also used the apparatus for measuring the scattering phase function and linear polarization for light scattering from irregular quartz aerosol particles. Our results show that Mie theory substantially overestimates the backscattering cross-section for quartz particles in the size parameter range X∼2–4, in agreement with previous experimental work and theoretical modeling studies. We also present a normalized synthetic phase function for quartz dust aerosol in the accumulation mode size range (0.1–2.0 μm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号