首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to analyze quantitative relationships between air pollution and mortality, and to examine the impact of migration on pollution-related mortality functions. Dose-response functions were estimated for intra-urban variations in ambient air quality for the city of Jacksonville, Florida. Indices of air pollution used in this study were sulfur dioxide (SO2) and total suspended particulates (TSP). Ambient air quality was measured by the dispersion of TSP and SO2 across census tracts using the SYMAP dispersion model in conjunction with air quality monitoring stations.

Holding other things constant, TSP apeared to have no statistically significant association with mortality rates. By contrast, the significance of the estimated coefficient for the pollution variable, SO2, supported the contention that there is a positive and statistically significant relationship between air pollution and mortality rates. However, after making a limited test of the impact of migration on dose-response functions, the SO2 pollution variable was no longer statistically significant. That is, recent migrants may have limited exposure to the existing level of SO2 in Jacksonville, Florida, but carry with them long term exposure to more heavily polluted areas in the Northern United States. The results of this study suggest that further epidemiological studies and economic analysis of the health effects on air pollution should make some attempt to control the migration effect.  相似文献   

2.
ABSTRACT

Daily counts of non-accidental deaths in Santiago, Chile, from 1988 to 1996 were regressed on six air pollutants— fine particles (PM2.5), coarse particles (PM10–2.5), CO, SO2, NO2, and O3. Controlling for seasonal and meteorological conditions was done using three different models— a generalized linear model, a generalized additive model, and a generalized additive model on previously filtered data. Single- and two-pollutant models were tested for lags of 1-5 days and the average of the previous 2-5 days.

The increase in mortality associated with the mean levels of air pollution varied from 4 to 11%, depending on the pollutants and the way season of the year was considered. The results were not sensitive to the modeling approaches, but different effects for warmer and colder months were found. Fine particles were more important than coarse particles in the whole year and in winter, but not in summer. NO2 and CO were also significantly associated with daily mortality, as was O3 in the warmer months. No consistent effect was observed for SO2. Given particle composition in Santiago, these results suggest that combustion-generated pollutants, especially from motor vehicles, may be associated with increased mortality. Temperature was closely associated with mortality. High temperatures led to deaths on the same day, while low temperatures lead to deaths from 1 to 4 days later.  相似文献   

3.
4.
Chile has a long tradition of exploiting mineral resources, particularly copper (Cu). One of the largest Cu smelters, Caletones, located some 150 km south of the country's capital, Santiago, in Central Chile, is responsible for about 0.4% of about 70 Tg S/yr oxidized sulfur (SOx) emitted by anthropogenic sources worldwide. Santiago, a megacity with 5 million inhabitants, stands for about 5 Gg S/yr. The average meteorological conditions are unfavorable for the dispersion of pollutants in this area. All this poses risks for human health and vegetation. Also, downwind from these polluted areas there may be large-scale impacts on cloud properties and on oxidative cycles. Here, we present the first attempt to assess the regional distribution of SOx in Central Chile using a dispersion model (MATCH) driven with data from a limited area weather forecast model (HIRLAM). Emphasis has been given to the impact of Cu smelters upon urban air quality, particularly that of Santiago. Six 1-month long periods were simulated for the years 1997, 1998 and 1999. These periods span over a broad range of typical meteorological conditions in the area including El Niño and La Niña years. Estimates of the regional dispersion and deposition patterns were calculated. The emissions from the large Cu smelters dominate the distribution of SOx. A budget of SOx over an area of 200×200 km2 around Santiago is presented. There is too low a number of monitoring stations to perform a detailed evaluation of MATCH. Nevertheless, the model reproduces consistently all the regional-scale characteristics that can be derived from the available observations.  相似文献   

5.
BackgroundIn the UK air quality has been monitored systematically since 1914, providing valuable data for studies of the long-term trends in air pollution and potentially for studies of health effects of air pollutants. There are, however, challenges in interpreting these data due to changes over time in the number and location of monitored sites, and in monitoring techniques. Particulate matter was measured as deposited matter (DM) using deposit gauge monitors until the 1950s when black smoke (BS) filters were introduced. Estimating long-term exposure to particulates using data from both deposit gauge and BS monitors requires an understanding of the relationships between DM, SO2 and BS.AimsTo explore whether DM and/or SO2, along with seasonal and location specific variables can be used to predict BS levels.MethodsAir quality data were abstracted from hard copies of the monthly Atmospheric Pollution Bulletins for the period April 1956–March 1961 for any sites with co-located DM, SO2 and BS data for three or more consecutive years. The relationships between DM, SO2, and BS were assessed using mixed models.ResultsThere were 34 eligible sites giving 1521 triplets of data. There was a consistent correlation between SO2 and BS at all sites, but the association between DM and BS was less clear and varied by location. Mixed modelling allowing for repeat measurements at each site revealed that SO2, year, rainfall and season of measurement explained 72% of the variability in BS levels.ConclusionsSO2 can be used as a surrogate measure for BS in all monitoring locations. This surrogate can be improved upon by consideration of site specific characteristics, seasonal effects, rainfall and year of measurement. These findings will help in estimating historic, long-term exposure to particulates where BS or other measures are not available.  相似文献   

6.
Urban air quality is one of the key factors affecting human health. Turkey has transformed itself into an urban society over the last 30 years. At the same time, air pollution has become a serious impairment to health in many urban areas in the country. This is due to many reasons. In this study, a nonparametric evaluation was conducted of health effects that are triggered by urban air pollution. Ni?de, the city which is the administrative centre of Nigde province was chosen of the effects of air pollution since, like many central Turkish cities, it is situated on a valley where atmospheric inversion occurs. In this paper, the relationship between ambient urban air quality, namely PM10 and sulphur dioxide (SO2), and human health, specifically asthma, during the winter season is examined. Air pollution data and asthma cases from 2006 to 2010 are covered in this study. The results of our study indicate that total asthma cases reported in Nigde between 2008 and 2010 were highly dependent on ambient SO2 concentration. More asthma cases were recorded when 30 μg?m?3 or higher SO2 was present in the ambient air than those recorded under cleaner ambient air conditions. Moreover, it was determined that in Nigde in 2010, asthma cases reported in males aged between 45 and 64 were closely correlated with ambient SO2 (α?=?0.05).  相似文献   

7.
Air pollutants in Santiago (33.5°S, 70.8°W, 500 m a.s.l.), a city with 5 million inhabitants, located in a basin in Central Chile surrounded by the high Andes, frequently exceed air quality standards. This affects human health and it stresses vegetation. The most extreme winter and fall pollution events occur when the subsident regime of the Pacific high is further enhanced by coastal lows (CLs), which bring down the base of the subsidence inversion. Under these conditions, the air quality worsens significantly giving rise to acute air pollution episodes. We assess the ability of a regional transport/chemistry/deposition model (MATCH) coupled to a meteorological model (High Resolution Limited Area Model—HIRLAM) to simulate the evolution of oxidized sulfur (SOx) in connection with intensive CLs. We focus on SOx since it is an environmental issue of concern, and the emissions and concentrations of SOx have been regularly monitored making it easier to bracket model outputs for SOx than for other pollutants. Furthermore, the SOx emissions in the area are very large, i.e., about 0.4% of the global anthropogenic sources. Comparisons with observations indicate that the combination of HIRLAM and MATCH is a suitable tool for describing the regional patterns of dispersion associated with CLs. However, the low number and the limited geographical coverage of reliable air quality data preclude a complete evaluation of the model. Nevertheless, we show evidence of an enhanced contribution of the largest copper smelter in the area, i.e., Caletones, to the burden of SOx in the Santiago basin, especially in the form of sulfate associated to fine particles (diameters <2.5 μm), during CLs. Further, we speculate that the Caletones plume may trigger or promote secondary aerosol formation during CLs in the Santiago basin.  相似文献   

8.
Real-time chemical measurements have been made as part of a field study of air quality in the city and harbour of Cork, Ireland. The data relate to the year 2008, with particular attention paid to the period between May and August. Eight air quality parameters were measured: NO, O3, NO2, SO2, EC, OC, particulate SO42? and PM2.5. The data have been used in a novel way involving wind and temporal averaging, along with Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF) methodologies to extrapolate major source contributions for PM2.5. It is demonstrated that continuous monitoring of standard air quality parameters, such as NO, NO2, SO2, along with EC, OC and particulate SO42?, can be used to provide relevant, cost-effective initial estimates of source contributions to ambient PM2.5 levels. It is also shown that the benefit of including OC and particulate SO42? in the monitoring protocol is considerable. Three major source groups of ambient PM2.5 mass in Cork were identified and quantified using this combined monitoring and modelling approach; road transport (19%), domestic solid fuel burning (14%) and oil-fired domestic and industrial boilers, including power generation plants (31%).  相似文献   

9.
A method is described for quantifying health risks to asthmatics briefly exposed to elevated levels of SO2. By combining symptomologlcal and physiological measurements, we have developed a dose-response surface that relates both severity and incidence of response to ambient air quality levels. The complete model to assess potentially avoidable risks includes power plant emission data; ambient SO2 background levels; demographic and activity patterns of asthmatics, the identified population at risk; and the dose-response surface. The estimated annual risk to persons experiencing an SO2-lnduced response due to a nearby power plant is quite small (response rates under 3 percent). Uncertainties due to modeling errors, variations in activity patterns, demographics and physiological response are discussed.  相似文献   

10.
A comprehensive and comparative model validation of two EPA models for short-term SO2 concentrations was performed. The two models tested were RAM (Urban version) and PTMTP (Terrain version). Both are multiple source, multiple receptor gaussian plume models, recommended in the EPA Guideline On Air Quality Models. 1 The principal difference between the two models is in their use of empirical dispersion coefficients. It was because of the potential for markedly different predicted maximum SO2 concentrations, and the absence of any testing data on the RAM model, that the validation analysis was undertaken. The current study utilized a full year of air quality data from monitoring sites in two Indiana cities, Michigan City and Indianapolis. Cumulative frequency distributions for each site and model were prepared and comparisons made. The results indicate that the RAM (Urban) model was highly inaccurate in predicting maximum short-term SO2 concentrations. The PTMTP model, although conservative in its estimates, produces results which more closely resemble the distribution of observed SO2 concentrations. The body of information presented in this paper is directed to environmental scientists responsible for air quality modeling, and to those persons who set policy on the use of models in air quality studies.  相似文献   

11.
ABSTRACT

Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4 2-, and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4 2- and non-SO4 2- portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day.

We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   

12.
ABSTRACT

It is widely accepted that some air pollutants are related to lung cancer prevalence. An effective method is proposed to quantitatively evaluate the effects of air pollutants and the interactions between them. The method consisted of three parts: data decomposition, comparable data generation and relationship inference. Firstly, very limited monitoring data published by Geographic Information System were applied to calculate the inhalable air pollution of relatively massive patient samples. Then the investigated area was partitioned into a number of districts, and the comparable data containing air pollutant concentrations and lung cancer prevalence in all districts were generated. Finally, the relationships between pollutants and lung cancer prevalence were concluded by an information fusion tool: Choquet integral. As an example, the proposed method was applied in the investigation of air pollution in Tianjin, China. Overall, SO2, O3 and PM2.5 were the top three factors for lung cancer. And there was obvious positive interaction between O3 and PM2.5 and negative interaction among SO2, O3 and PM10. The effect of SO2 on men was larger than on women. O3 and SO2 were the most important factors for the adenocarcinoma and squamous cell carcinoma, respectively. The effect of SO2 or NO2 on squamous cell carcinoma is obviously larger than that on adenocarcinoma, while the effect of O3 or PM2.5 on adenocarcinoma is obviously larger than that on squamous cell carcinoma. The results provide important suggestions for management of pollutants and improvement of environmental quality. The proposed method without any parameter is general and easily realized, and it sets the foundation for further researches in other cities/countries.

Implications: For total lung cancer prevalence, male and female lung cancer prevalence, and adenocarcinoma and squamous cell carcinoma prevalence, the proposed method not only quantify the effect of single pollutant (SO2, NO2, CO, O3, PM2.5, and PM10) but also reveals the correlations between different pollutants such as positive interaction or negative interaction. The proposed method without any geographic predictor and parameter is much easier to realize, and it sets the foundation for further research in other cities/countries. The study results provide important suggestions for the targeted management of different pollutants and the improvement of human lung health.  相似文献   

13.
ABSTRACT

This paper presents a detailed analysis of the meteorological conditions that are associated with strong air pollution episodes in Ankara, Turkey. Based on climatological and air quality data [SO2 and TSP (total suspended par-ticulates)] obtained for the winter months during 19891994, the analysis showed that the presence of weak atmospheric pressure gradients and warm air advection were the most important factors leading to high SO2 and TSP concentrations. In addition, the onset of the high air pollution episodes was generally associated with a trend toward negative vorticity at the 850-hPa level.  相似文献   

14.
Ambient monitored data at Santiago, Chile, are analyzed using box models with the goal of assessing contributions of different economic activities to air pollution levels. The box modeling approach was applied to PM10, PM2.5 and coarse (PM10–PM2.5) particulate matter (PM) fractions; the period analyzed is 1989–1999. A linear model for each PM fraction was obtained, having as independent variables CO and SO2 concentrations, plus a term proportional to (wind speed)−1 that lumps together non-combustion emissions and secondary generation terms; wet scavenging is included as another independent variable. Model identification results show good agreement for the different parameters across monitoring stations. The washout ratios and scavenging coefficients agree with data published in the literature, being higher for the coarse PM fraction. The CO and SO2 coefficients fitted for 1989–1995 agree with a priori estimates for the same period. Background estimates for the PM fractions are in agreement with measurement campaigns in upwind sites. Results show that transportation sources have become the dominant contributors to ambient PM levels, while stationary sources have decreased their contributions in the last years. The relative importance of mobile sources to PM2.5 ambient concentrations has doubled in the last 10 years, whereas stationary sources have reduced their relative contributions to half the value in the early 1990s. Model estimates of regional background of PM2.5 and PM10 have decreased 50% and 22% in the last decade, respectively; coarse background has shown no significant change. The final conclusion is that there is room and need for a more intensive emission reduction strategy for Santiago, focusing on mobile sources. The approach pursued in this work is feasible for cities or regions where comprehensive, transport and chemistry models are not available yet, but estimates of air quality contributions are needed for policy purposes. The methodology requires data on ambient air quality measurements and surface meteorology.  相似文献   

15.
This study used pollution roses to assess sulfur dioxide (SO2) pollution in a township downwind of a large petrochemical complex based on data collected from a single air quality monitoring station. The pollution roses summarized hourly SO2 concentrations at the Taishi air quality monitoring station, located approximately 7.8–13.0 km south of the No. 6 Naphtha Cracking Complex in Taiwan, according to 36 sectors of wind direction during the preoperational period (1995–1999) and two postoperational periods (2000–2004 and 2005–2009). The 99th percentile of hourly SO2 concentrations 350? downwind from the complex increased from 28.9 ppb in the preoperational period to 86.2–324.2 ppb in the two postoperational periods. Downwind SO2 concentrations were particularly high during 2005–2009 at wind speeds of 6–8 m/sec. Hourly SO2 levels exceeded the U.S. Environmental Protection Agency (EPA) health-based standard of 75 ppb only in the postoperational periods, with 65 exceedances from 0–10? and 330–350? downwind directions during 2001–2009. This study concluded that pollution roses based on a single monitoring station can be used to investigate source contributions to air pollution surrounding industrial complexes, and that it is useful to combine such directional methods with analyses of how pollution varies between different wind speeds, times of day, and periods of industrial development.

Implications: The pollution roses summarize SO2 concentrations by wind direction and to investigate source contribution to air quality. Percentile statistics can catch pollution episodes occurring in a very short time at specific wind directions and speeds. The downwind areas have already exceeded regulated 1-hr SO2 standard since the operation of the complex.  相似文献   

16.
Background The development of the city of Patras, including harbour relocation, in conjunction with the protection of the regional ecosystems, requires air quality assessment and management. For this reason, a model applicable in the Patras area is necessary and valuable. The goal of this study was to validate a model suitable for predicting the dispersion of sulfur dioxide (SO2), based on particular activity, topography and weather conditions. Methods We used the US-EPA ISCLT3 integral dispersion model to predict SO2 concentrations for Patras, Greece. We assumed that the major contribution to Patras air pollution came from central heating, harbour and traffic. We calculated traffic emissions using COPERTIII. Results and Discussion Assigning suitable values of the mixing height, the model predicted the local and spatial distribution of the mean monthly SO2 concentrations in downtown Patras, as well computed the contribution of the SO2 emissions originating from each particular source at each receptor location on a seasonal and annual basis. The comparison between predictions and measurements shows that the model performance for estimating the SO2 concentrations and period pattern is satisfactory. Conclusion The mixing height was the critical parameter for calibrating the model. Model validation promises satisfactory predictions for SO2 pollution levels on monthly basis. Recommendations and Outlook The model could be used in predicting SO2 concentrations and source contribution for several downtown Patras receptors using pertinent meteorological and emission information. It could be also extended to predict the dispersion of other primary air pollutants. The calibrated model predictions could be used to fill gaps in monitoring data, saving money and time, and help in assess and manage air quality as Patras develops.  相似文献   

17.
Although sulphur emissions (mainly as SO2) have been continuously decreasing over the last 20 years in most western industrialized countries, localized SO2 problems still exist in conjunction with strong local emission, meteorological, and topographical factors. In this study, the effect of supplementary installed flue gas desulphurization (FGD) units at high-capacity power plants on regional air pollution in the Carpathian Basin is investigated. The dispersion and accumulation of the SO2 air pollutant are studied with the regional three-dimensional on-line atmosphere-chemistry model REMOTE. The changes in the SO2 air pollution are investigated by parallel simulations in a case study, where the single modified parameter is the SO2 emission rate. The results show that FGD units significantly reduce the horizontal and the vertical dispersion of the emitted SO2, and its transboundary transport, too. Beside the SO2 removal efficiency, the dispersion and accumulation also depend on the seasonal weather conditions. During winter, the dispersion and accumulation are higher than in other seasons. Due to this phenomenon, higher SO2 removal efficiency is needed to guarantee similar air quality features like in the other seasons.  相似文献   

18.
Atmospheric samples collected in several American cities were analyzed for SO2 concentration using various analytical methods. The methods were: (1) electroconductivity, (2) West-Gaeke, (3) West-Gaeke with membrane prefdter, (4) West-Gaeke with glass-fiber prefilter, (5) hydrogen peroxide, (6) hydrogen peroxide with membrane prefilter, and (7) hydrogen peroxide with glass-fiber prefilter. The relationships among SO2 data produced by these methods were evaluated statistically. Where statistical differences among methods, at the 95% confidence level, were determined then relationships were further delineated. Factors considered in these comparisons were: (1) location, {2) time of day, (8) concentration range, (4) particulate concentration, and (5) humidity. Laboratory evaluations of these methods show that each method is subject to different interfering substances. Laboratory evaluations of these methods show that each method is subject to different interfering substances. The relationship among methods obtained in these studies will complement these data and perhaps provide for further laboratory and field evaluation of methods used to measure SO2. The relationship among SO2 data produced by these methods should be useful in relating atmospheric SO2 concentration to its effects and to those involved in establishing ambient air quality standards.  相似文献   

19.
Whereas most estimates of material damage are based on industrial surveys, the estimates produced in this study were derived from material damage experiments and ambient air quality data. Air quality data on SO2 were obtained from 200 or more monitoring sites primarily located in heavily populated or polluted areas. Material threshold damage function data were then compared with SO2 levels, and an estimate of losses, as reflected in increased maintenance and replacement costs, was determined. Estimates of the total stock of various materials in use were derived from census and industry data and allocated geographically according to population. A substantial decrease in the ambient SO2 levels, particularly in larger urban areas, has occurred during the past five years. From 1968 to 1972, the estimated amount of material damage from SO2 in the U. S. decreased from $900 million/yr to less than $100 million. During this period, the estimated percentage of man made materials exposed to SO2 levels exceeding the proposed secondary annual average standard (60 μg/m3) and primary annual average standard (80 μg/m3) in the U. S. fell respectively, from 20% to less than 5% and from more than 10% to less than 1%. Most of the present loss is attributed to corrosion damage of metallic surfaces that are normally exposed to the ambient environment.  相似文献   

20.
Previous analyses of continuously measured compounds in Fort McKay, an indigenous community in the Athabasca Oil Sands, have detected increasing concentrations of nitrogen dioxide (NO2) and total hydrocarbons (THC), but not of sulfur dioxide (SO2), ozone (O3), total reduced sulfur compounds (TRS), or particulate matter (aerodynamic diameter <2.5 μm; PM2.5). Yet the community frequently experiences odors, dust, and reduced air quality. The authors used Fort McKay’s continuously monitored air quality data (1998–2014) as a case study to assess techniques for air quality analysis that make no assumptions regarding type of change. Linear trend analysis detected increasing concentrations of higher percentiles of NO2, nitric oxide (NO), and nitrogen oxides (NOx), and THC. However, comparisons of all compounds between an early industrial expansion period (1998–2001) and current day (2011–2014) show that concentrations of NO2, SO2, THC, TRS, and PM2.5 have significantly increased, whereas concentrations of O3 are significantly lower. An assessment of the frequency and duration of periods when concentrations of each compound were above a variety of thresholds indicated that the frequency of air quality events is increasing for NO2 and THC. Assessment of change over time with odds ratios of the 25th, 50th, 75th, and 90th percentile concentrations for each compound compared with an estimate of natural background variability showed that concentrations of TRS, SO2, and THC are dynamic, higher than background, and changes are nonlinear and nonmonotonic. An assessment of concentrations as a function of wind direction showed a clear and generally increasing influence of industry on air quality. This work shows that evaluating air quality without assumptions of linearity reveals dynamic changes in air quality in Fort McKay, and that it is increasingly being affected by oil sands operations.

Implications: Understanding the nature and types of air quality changes occurring in a community or region is essential for the development of appropriate air quality management policies. Time-series trending of air quality data is a common tool for assessing air quality changes and is often used to assess the effectiveness of current emission management programs. The use of this tool, in the context of oil sands development, has significant limitations, and alternate air quality change analysis approaches need to be applied to ensure that the impact of this development on air quality is fully understood so that appropriate emission management actions can be taken.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号