首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Scavenging coefficients are obtained for sea-salt particles at rainfall intensity of 5, 10, 15, 20 and 45 mm h−1. Evolutions of size distributions for sea-salt particles by precipitation scavenging are simulated using theoretically estimated scavenging coefficients. Results indicate that below-cloud scavenging affects mainly sea-salt particles in coarse mode. Observed concentrations of Na+ and Cl in rainwater increased with rainfall intensity and aerosol size. Comparison of predicted concentrations of Na+ and Cl in rainwater with observed ionic concentrations of short-timed wet-only samples collected during rain events on 2 August 2002 over Arabian Sea (ARMEX-2002) supports the model result.  相似文献   

2.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

3.
During April 1999 and March 2000, intensive field campaigns were performed on a mid-level mountain (Rax, 1644 m a.s.l.) in Central Europe both under out-of-cloud and in-cloud conditions. The black carbon (BC) content of both aerosol and cloud water as well as BC scavenging efficiencies of Rax clouds were measured. As a tracer for the non-carbonaceous aerosol, sulfate was used. Although BC concentrations on Rax were low (April 1999 out-of-cloud average: 0.43 μg/m3, March 2000: 0.72 μg/m3), the BC mass fraction of the aerosol was fairly high (1999: 3.5%, 2000: 6.4%). Average BC concentrations in cloud water were 1.09 μg/ml (1999) and 1.4 μg/ml (2000). These values are far higher than literature values, but comparable to those found in an earlier study (J. Geophys. Res. 105 (D20) (2000) 24637) at a high-level mountain (Sonnblick, 3106 m a.s.l.) some 200 km distant from Rax. The average BC scavenging efficiency of the Rax clouds in March 2000 was 0.54. The increase of scavenging efficiency with increasing liquid water content of the clouds found earlier on Sonnblick for sulfate and aerosol carbon (J. Atmos. Chem 35 (2000) 33), organic carbon (J. Geophys. Res. 105 (2000) 19857), and BC (J. Geophys. Res. 105 (D20) (2000) 24637) was also confirmed on Rax.  相似文献   

4.
The concentrations of monosaccharide anhydrides (levoglucosan, mannosan, galactosan) in PM1 and PM2.5 aerosol samples were measured in Brno and ?lapanice in the Czech Republic in winter and summer 2009. 56 aerosol samples were collected together at both sites to investigate the different sources that contribute to aerosol composition in studied localities. Daily PM1 and PM2.5 aerosol samples were collected on pre-fired quartz fibre filters.The sum of average atmospheric concentration of levoglucosan, mannosan and galactosan in PM1 aerosol in ?lapanice and Brno during winter was 513 and 273 ng m?3, while in summer the sum of average atmospheric concentration of monosaccharide anhydrides (MAs) was 42 and 38 ng m?3, respectively. The sum of average atmospheric concentration of MAs in PM1 aerosol formed 71 and 63% of the sum of MA concentration in PM2.5 aerosol collected in winter in ?lapanice and Brno, whereas in summer the sum of average atmospheric concentration of MAs in PM1 aerosol formed 45 and 43% of the sum of MA concentration in PM2.5 aerosol in ?lapanice and Brno, respectively.In winter, the sum of MAs contributed significantly to PM1 mass ranging between 1.37% and 2.67% of PM1 mass (Brno – ?lapanice), while in summer the contribution of the sum of MAs was smaller (0.28–0.32%). Contribution of the sum of MAs to PM2.5 mass is similar both in winter (1.37–2.71%) and summer (0.44–0.55%).The higher concentrations of monosaccharide anhydrides in aerosols in ?lapanice indicate higher biomass combustion in this location than in Brno during winter season. The comparison of levoglucosan concentration in PM1 and PM2.5 aerosol shows prevailing presence of levoglucosan in PM1 aerosol both in winter (72% on average) and summer (60% on average).The aerosol samples collected in ?lapanice and Brno in winter and summer show comparable contributions of levoglucosan, mannosan and galactosan to the total amount of monosaccharide anhydrides in both aerosol size fractions. Levoglucosan was the most abundant monosaccharide anhydride with a relative average contribution to the total amount of MAs in the range of 71–82% for PM1 aerosols and 52–79% for PM2.5 aerosols.  相似文献   

5.
Atmospheric dry deposition is an important process for the introduction of aerosols and pollutants to aquatic environments. The objective of this paper is to assess, for the first time, the influence that the aquatic surface microlayer plays as a modifying factor of the magnitude of dry aerosol deposition fluxes. The occurrence of a low surface tension (ST) or a hydrophobic surface microlayer has been generated by spiking milli-Q water or pre-filtered seawater with a surfactant or octanol, respectively. The results show that fine mode (<2.7 μm) aerosol phase PAHs deposit with fluxes 2–3 fold higher when there is a low ST aquatic surface due to enhanced sequestration of colliding particles at the surface. Conversely, for PAHs bound to coarse mode aerosols (>2.7 μm), even though there is an enhanced deposition due to the surface microlayer for some sampling periods, the effect is not observed consistently. This is due to the importance of gravitational settling for large aerosols, rendering a lower influence of the aquatic surface on dry deposition fluxes. ST (mN m−1) is identified as one of the key factor driving the magnitude of PAH dry deposition fluxes (ng m−2 d−1) by its influence on PAH concentrations in deposited aerosols and deposition velocities (vd, cm s−1). Indeed, vd values are a function of ST as obtained by least square fitting and given by Ln(vd)=−1.77 Ln(ST)+5.74 (r2=0.95) under low wind speed (average 4 m s−1) conditions.  相似文献   

6.
Aqueous OH radical oxidation of methylglyoxal in clouds and wet aerosols is a potentially important global and regional source of secondary organic aerosol (SOA). We quantify organic acid products of the aqueous reaction of methylglyoxal (30–3000 μM) and OH radical (approx. 4 × 10?12 M), model their formation in the reaction vessel and investigate how the starting concentrations of precursors and the presence of acidic sulfate (0–840 μM) affect product formation. Predicted products were observed. The predicted temporal evolution of oxalic acid, pyruvic acid and total organic carbon matched observations at cloud relevant concentrations (30 μM), validating this methylglyoxal cloud chemistry, which is currently being implemented in some atmospheric models of SOA formation. The addition of sulfuric acid at cloud relevant concentrations had little effect on oxalic acid yields. At higher concentrations (3000 μM), predictions deviate from observations. Larger carboxylic acids (≥C4) and other high molecular weight products become increasingly important as concentration increases, suggesting that small carboxylic acids are the major products in clouds while larger carboxylic acids and oligomers are important products in wet aerosols.  相似文献   

7.
During the month of August 2004, the size-resolved number concentration of water-insoluble aerosols (WIA) from 0.25 to 2.0 μm was measured in real-time in the urban center of Atlanta, GA. Simultaneous measurements were performed for the total aerosol size distribution from 0.1 to 2.0 μm, the elemental and organic carbon mass concentration, the aerosol absorption coefficient, and the aerosol scattering coefficient at a dry (RH=30%) humidity. The mean aerosol number concentration in the size range 0.1–2.0 μm was found to be 360±175 cm−3, but this quantity fluctuated significantly on time scales of less than one hour and ranged from 25 to 1400 cm−3 during the sample period. The mean WIA concentration (0.25–2.0 μm) was 13±7 cm−3 and ranged from 1 to 60 cm−3. The average insoluble fraction in the size range 0.25–2.0 μm was found to be 4±2.5% with a range of 0.3–38%. The WIA population was found to follow a consistent diurnal pattern throughout the month with concentration maxima concurring with peaks in vehicular traffic flow. WIA concentration also responded to changes in meteorological conditions such as boundary layer depth and precipitation events. The temporal variability of the absorption coefficient followed an identical pattern to that of WIA and ranged from below the detection limit to 55 Mm−1 with a mean of 8±6 Mm−1. The WIA concentration was highly correlated with both the absorption coefficient and the elemental carbon mass concentration, suggesting that WIA measurements are dominated by fresh emissions of elemental carbon. For both the total aerosol and the WIA size distributions, the maximum number concentration was observed at the smallest sizes; however the WIA size distribution also exhibited a peak at 0.45 μm which was not observed in the total population. Over 60% of the particles greater than 1.0 μm were observed to be insoluble in the water sampling stream used by this instrumentation. Due to the refractive properties of black carbon, it is highly unlikely that these particles could be composed of elemental carbon, suggesting a crustal source for super-micron WIA.  相似文献   

8.
During the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study, conducted during the spring and summer of 2006, a suite of instruments located near the eastern boundary of Rocky Mountain National Park (RMNP) measured aerosol physical, chemical and optical properties. Three instruments, a differential mobility particle sizer (DMPS), an optical particle counter (OPC), and an aerodynamic particle sizer (APS), measured aerosol size distributions. Aerosols were sampled by an Interagency Monitoring of Protected Visual Environments (IMPROVE) sampler and a URG denuder/filter-pack system for compositional analysis. An Optec integrating nephelometer measured aerosol light scattering. The spring time period had lower aerosol concentrations, with an average volume concentration of 2.2 ± 2.6 μm3 cm?3 compared to 6.5 ± 3.9 μm3 cm?3 in the summer. During the spring, soil was the single largest constituent of PM2.5 mass, accounting for 32%. During the summer, organic carbon accounted for 60% of the PM2.5 mass. Sulfates and nitrates had higher fractional contributions in the spring than the summer. Variability in aerosol number and volume concentrations and in composition was greater in the spring than in the summer, reflecting differing meteorological conditions. Aerosol scattering coefficients (bsp) measured by the nephelometer compared well with those calculated from Mie theory using size distributions, composition data and modeled RH dependent water contents.  相似文献   

9.
Atmospheric transport of trace elements has been found to be an important pathway for their input to the ocean. TSP, PM10, and PM2.5 aerosol samples were collected over the Northern South China Sea in two cruises in 2003 to estimate the input of aerosol from continent to the ocean. About 23 elements and 14 soluble ions in aerosol samples were measured. The average mass concentration of TSP in Cruise I in January (78 μg m−3) was ∼twice of that in Cruise II in April (37 μg m−3). Together with the crustal component, heavy metals from pollution sources over the land (especially from the industry and automobiles in Guangzhou) were transported to and deposited into the ocean. The atmospheric MSA concentrations in PM2.5 (0.048 μg m−3 in Cruise I and 0.043 μg m−3 in Cruise II) over Northern South China Sea were comparable to those over other coastal regions. The ratio of non-sea-salt (NSS)-sulfate to MSA is 103-655 for Cruise I and 15-440 for Cruise II in PM2.5 samples, which were much higher than those over remote oceans. The estimated anthropogenic sulfate accounts for 83–98% in Cruise I and 63–95% in Cruise II of the total NSS-sulfate. Fe (II) concentration in the aerosols collected over the ocean ranged from 0.1 to 0.9 μg m−3, accounting for 16–82% of the total iron in the aerosol, which could affect the marine biogeochemical cycle greatly.  相似文献   

10.
Articles have recently been published on aerosol size distributions and number concentrations in cities, however there have been no studies on transport of these particles. Eddy covariance measurements of vertical transport of aerosol in the size range 11 nm<Dp<3 μm are presented here. The analysis shows that typical average aerosol number fluxes in this size range vary between 9000 and 90,000 cm−2 s−1. With concentrations between 3000 and 20,000 cm−3 this leads to estimates of particle emission velocity between 20 and 75 mm s−1. The relationships between number flux and traffic activity, along with emission velocity and boundary layer stability are demonstrated and parameterised. These are used to derive an empirical parameterisation for aerosol concentration in terms of traffic activity and stability. The main processes determining urban aerosol fluxes and concentrations are discussed and quantified where possible. The difficulties in parameterising urban activity are discussed.  相似文献   

11.
The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m−3), aluminium (as Al2O3 from around 600 to 2200 ng m−3), titanium (from 200 to 700 ng m−3), magnesium (from 100 to 500 ng m−3), lead (from 17 to 379 ng m−3), barium (from 39 to 322 ng m−3), strontium (from 3 to 112 ng m−3), copper (from 12 to 71 ng m−3), and antimony (from 1 to 52 ng m−3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.  相似文献   

12.
Regular measurements of total mass concentration and mass-size distribution of near-surface aerosols, made using a ten-channel Quartz Crystal Microbalance (qcm) Impactor for the period October 1998–December 1999 at the tropical coastal station Trivandrum (8.5°N, 77°E), are used to study the response of aerosol characteristics to regional mesoscale and synoptic processes. Results reveal that aerosol mass concentrations are generally higher under land breeze conditions. The sea breeze generally has a cleansing effect, depleting the aerosol loading. The continental air (LB regime) is richer in accumulation mode (submicron) aerosols than the marine air. On a synoptic scale, aerosol mass concentration in the submicron mode decreased from an average high value of ∼86 μg m−3 during the dry months (January–March) to ∼11 μg m−3 during the monsoon season (June–September). On the contrary mass concentration in the supermicron mode increased from a low value of ∼15 μg m−3 during the dry months to reach a comparatively high value of ∼35 μg m−3 during April, May. Correspondingly, the effective radius (Reff) increased from a low value of 0.15–0.17 μm to ∼0.3 μm indicating a seasonal change in the size distribution. The mass-size distribution shows mainly three modes, a fine mode (∼0.1 μm); a large mode (∼0.5 μm) and a coarse mode (∼3 μm). The fine mode dominates in winter. In summer the large mode becomes more conspicuous and the coarse mode builds up. The fine mode is highly reduced in monsoon and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. The size distribution tends to revert to the winter pattern in the post-monsoon season. Accumulation (submicron) aerosols account for ∼98% of the total surface area and ∼70% of the total volume of aerosols during winter. During monsoon, even though they still account for ∼90% of the area, their contribution to the volume is reduced to ∼50%; the coarse aerosols account for the rest.  相似文献   

13.
Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42?) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO42? and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42?, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration–response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO42? and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of ?74 mW m?2 in 2000 and between ?15 and ?97 mW m?2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the loss of net negative radiative forcing.  相似文献   

14.
We estimate the contributions from biomass burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal and annual aerosol concentrations in the United States. Our approach is to use total carbonaceous (TC) and non-soil potassium (ns-K) aerosol mass concentrations for 2001–2004 from the nationwide IMPROVE network of surface sites, together with satellite fire data. We find that summer wildfires largely drive the observed interannual variability of TC aerosol concentrations in the United States. TC/ns-K mass enhancement ratios from fires range from 10 for grassland and shrub fires in the south to 130 for forest fires in the north. The resulting summer wildfire contributions to annual TC aerosol concentrations for 2001–2004 are 0.26 μg C m−3 in the west and 0.14 μg C m−3 in the east; Canadian fires are a major contributor in the east. Non-summer wildfires and prescribed burns contribute on an annual mean basis 0.27 and 0.31 μg C m−3 in the west and the east, highest in the southeast because of prescribed burning. Residential biofuel is a large contributor in the northeast with annual mean concentration of up to 2.2 μg C m−3 in Maine. Industrial biofuel (mainly paper and pulp mills) contributes up to 0.3 μg C m−3 in the southeast. Total annual mean fine aerosol concentrations from biomass burning average 1.2 and 1.6 μg m−3 in the west and east, respectively, contributing about 50% of observed annual mean TC concentrations in both regions and accounting for 30% (west) and 20% (east) of total observed fine aerosol concentrations. Our analysis supports bottom-up source estimates for the contiguous United States of 0.7–0.9 Tg C yr−1 from open fires (climatological) and 0.4 Tg C yr−1 from biofuel use. Biomass burning is thus an important contributor to US air quality degradation, which is likely to grow in the future.  相似文献   

15.
This paper discusses the extent of Black Carbon (BC) radiative forcing in the total aerosol atmospheric radiative forcing over Pune, an urban site in India. Collocated measurements of aerosol optical properties, chemical composition and BC were carried out for a period of six months (during October 2004 to May 2005) over the site. Observed aerosol chemical composition in terms of water soluble, insoluble and BC components were used in Optical Properties of Aerosols and Clouds (OPAC) to derive aerosol optical properties of composite aerosols. The BC fraction alone was used in OPAC to derive optical properties of BC aerosols. The aerosol optical properties for composite and BC aerosols were separately used in SBDART model to derive direct aerosol radiative forcing due to composite and BC aerosols. The atmospheric radiative forcing for composite aerosols were found to be +35.5, +32.9 and +47.6 Wm?2 during post-monsoon, winter and pre-monsoon seasons, respectively. The average BC mass fraction found to be 4.83, 6.33 and 4 μg m?3 during the above seasons contributing around 2.2 to 5.8% to the total aerosol load. The atmospheric radiative forcing estimated due to BC aerosols was +18.8, +23.4 and +17.2 Wm?2, respectively during the above seasons. The study suggests that even though BC contributes only 2.2–6% to the total aerosol load; it is contributing an average of around 55% to the total lower atmospheric aerosol forcing due to strong radiative absorption, and thus enhancing greenhouse warming.  相似文献   

16.
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl, NO2, NO3, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.  相似文献   

17.
In this study, we will present evidence that aerosol particles have strong effects on the surface ozone concentration in a highly polluted city in China. The measured aerosol (PM10), UV flux, and O3 concentrations were analyzed from 1 November (1 Nov) to 7 November (7 Nov) 2005 in Tianjin, China. During this period, the aerosol concentration had a strong day-by-day variation, ranging from 0.2 to 0.6 mg m−3. The ozone concentration also shows a strong variability in correlation with the aerosol concentration. During 1 Nov, 2 Nov, 6 Nov, and 7 Nov, the ozone concentration was relatively high (about 30–35 ppbv; defined as a high-ozone period), and during 3 Nov to 5 Nov, the ozone concentration was relatively low (about 5–20 ppbv; defined as a low-ozone period). The analysis of the measurement shows that the ozone concentration is strongly correlated to the measured UV flux. Because there were near cloud-free conditions between 1 Nov and 7 Nov, the variation of the UV flux mainly resulted from the variation of aerosol concentration. The result shows that higher aerosol concentrations produce a lower UV flux and lower ozone concentrations. By contrast, the lower aerosol concentration leads to a higher UV flux and higher ozone concentrations. A chemical mechanism model (NCAR MM) is applied to interpret the measurement. The model result shows that the extremely high aerosol concentration in this polluted city has a very strong impact on photochemical activities and ozone formation. The correlation between aerosol and ozone concentrations appears in a non-linear feature. The O3 concentration is very sensitive to aerosol loading when aerosol loading is high, and this sensitivity is reduced when aerosol loading is low. For example, the ratio of Δ[O3]/Δ[AOD] is about −16 ppbv AOD−1 when AOD is less than 2, and is only −4 ppbv AOD−1 when AOD is between 2 and 5. This result implies that a future decrease in aerosol loading could lead to a rapid increase in the O3 concentration in this region.  相似文献   

18.
Classical methodology based on the application of filters for sampling, followed by extraction and analysis, introduces severe artifacts for semi-volatile compounds like ammonium nitrate. These filter methods do not meet the requirements for the assessment of the impact of aerosols on acidification, air quality and especially on the radiative balance, in terms of required speed, detection limits and selectivity. These artifacts are avoided by using a steam jet aerosol collector sampler, based on scavenging of aerosols by droplet formation, in combination with on-line analytical techniques such as ion-chromatography for nitrate and membrane separation followed by conductivity detection for ammonium. The SJAC sampler combines very low blanks with high efficiency of collection of particles. The ammonium detector and the IC system, based on 1-point internal standard calibration in combination with correction for curved calibration graphs, enables detection of ammonium and nitrate at background conditions, the detection limit is about 0.02 μg m−3 of ammonium and nitrate. Accuracy is, depending on ambient concentration, in the order of 5–10% relative, at a range of 0.05–50 μg m−3. The time resolution is 15–120 min, depending on required detection limit, and is short enough for continuously monitoring the chemical composition of aerosols. Quality assurance and quality control experiments and intercomparison experiments with classical filter methods, thermo-denuder systems, denuder difference methods and other continuous monitoring techniques have shown that the results are reliable. The instrument has successfully been employed in field campaigns in Europe and the US.  相似文献   

19.
Size distribution of particle number concentrations in the geometric equivalent diameter range 0.01–2.5 μm were determined in three communities, Zerbst, Bitterfeld and Hettstedt of the state of Sachsen-Anhalt in Eastern Germany, in the first half of 1993 and 1999. A Mobile Aerosol Spectrometer (MAS) consisting of a differential mobility particle spectrometer (DMPS) and a laser aerosol spectrometer (LAS-X) were used for size-selective particle number concentration measurements from which mass concentrations were derived based on an apparent mean density of the ambient aerosol of the closely situated city of Erfurt.The total number concentration was governed by ultra-fine particles (<0.1 μm) (81% in 1993 and 90% in 1999) and 0.1–0.5 μm size fraction dominates total mass concentration (approximately 80%). While the mass concentration of fine particles (PM2.5) decreased from 39 to 19 μg m−3, the geometric means of total number concentration showed constant concentration (13.3×103 cm−3 in 1993 and 13.3×103 cm−3 in 1999, p=0.975) and the geometric means of number concentration of ultra-fine particles (UP) between 10 and 30 nm increased from 5.9×103 to 8.2×103 cm−3 from 1993 to 1999 (p=0.016). The temporal changes of number and mass concentrations in the three communities are similar. The clear shift to smaller particle sizes within this six years period was caused by changes of the most prominent sources, traffic and domestic heating, since formerly dominating industries in Bitterfeld and Hettstedt had vanished grossly.  相似文献   

20.
Preliminary experimental results are presented from an aircraft-mounted probe designed to provide in situ data on cloud particle shape, size, and number concentration. In particular, the probe has been designed to facilitate discrimination between super-cooled water droplets and ice crystals of 1–25 μm size within mixed-phase clouds and to provide information on cloud interstitial aerosols. The probe acquires spatial light scattering data from individual particles at throughput rates of several thousand particles per second. These data are logged at 100 ms intervals to allow the distribution and number concentration of each particle type to be determined with 10 m spatial resolution at a typical airspeed of 100 m s−1. Preliminary results from flight data recorded in altocumulus castellanus, showing liquid water phase, mixed phase, and ice phase are presented to illustrate the probe's particle discrimination capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号