首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Making defensible risk-based decisions is a complex process that incorporates risk assessment into a risk management framework. Many site investigations require additional study, negotiations and/or actions for arsenic detected in soil samples, in many cases where no process related sources are identified and no other chemicals of concern are identified. Regulatory agencies develop guidance to standardize approaches to risk-based site investigations that focus on achieving "safe" concentrations. For arsenic, the action level is frequently in the "gray region", a U.S. Environmental Protection Agency (USEPA) term associated with a region of high uncertainty for risk management decisions in the "decision performance curve" associated with the data quality objective (DQO) process. Recognizing the conservative nature of the risk-based screening value for arsenic, approaches to enforce this level (or proof of comparability to natural background) may have numerous consequences including ineffective use of resources, stigmas on properties or actions at industrial or hazardous sites that are inconsistent with their regional setting. Florida has developed regulations and guidance on investigation of brownfield sites and has supported a study by the University of Florida (UF) to evaluate natural background concentrations in Florida soils. This paper discusses the sources of uncertainty near the soil cleanup target levels (SCTLs) in the Florida decision-making framework.  相似文献   

2.
The physicochemical properties and the contamination levels of mercury and arsenic in roadway dust from Baoji, NW China were investigated using an Atomic Fluorescence Spectrophotometer. Contamination levels were assessed based on the geoaccumulation index and the enrichment factor. The results show that magnetic susceptibilities of roadway dust were higher than Holocene loess–soil of central Shaanxi Loess Plateau. The mean contents of organic matter, PM10 and PM100 were 8.8%, 21.8% and 98.6%, respectively. Mercury concentration ranged from 0.48 to 2.32 μg g?1, with a mean value of 1.11 μg g?1, 17.1 times the Chinese soil mercury background value and 37 times the Shaanxi soil mercury background value. Arsenic concentration ranged from 9.0 to 42.8 μg g?1, with a mean value of 19.8 μg g?1, 1.8 times the Chinese and Shaanxi soil arsenic background values. The geoaccumlation index and enrichment factor indicate that mercury in the dust mainly originated from anthropogenic sources with ratings of “strongly polluted” and “strongly to extremely polluted”, whereas arsenic in dust originated from both natural and anthropogenic sources, with a ratings of “moderately to strongly polluted” and “strongly polluted”. Industrial activities, such as a coal-fired power station, coke-oven plant, and cement manufacturing plant, augmented by vehicular traffic, are the anthropogenic sources of mercury and arsenic in the roadway dust.  相似文献   

3.
Background concentrations of soil arsenic have been used as an alternative soil cleanup criterion in many states in the U.S. This research addresses issues related to the interpretation of background concentrations of arsenic in near pristine soils in Florida. Total arsenic was measured in 448 taxonomic and geographic representative surface soil samples using USEPA Method 3052 (HCl-HNO 3 -HF, microwave digestion) and graphite furnace atomic absorption spectrophotometry analysis procedure. Values were log-normally distributed, with geometric mean and baseline concentration (defined as 95% of the expected range of background concentrations) providing the most satisfactory statistical results. An upper baseline concentration of 6.21 mg As/kg was estimated for undisturbed soils (n=267) compared to 7.63 mg As/kg for disturbed soils (n=181). Temporal trend of total soil arsenic concentrations from 1967 to 1989 paralleled decreased usage of arsenic in U.S. agriculture. Soil arsenic background concentrations were generally higher in south Florida than in north and central Florida, and associated with wet soils. Individual high arsenic sites were scattered throughout the state, but the most highly concentrated of these occurred in the Leon-Lee belt along the Ocala uplift district extending to the southwestern flatwoods district. Extrapolation of the data using a single arsenic value regardless of the taxonomic and geographical differences in soil arsenic distribution would underestimate potential arsenic contamination in upland soils.  相似文献   

4.
Knowledge of arsenic background concentrations in urban soils is important for making remediation decisions. The soil cleanup target level (SCTL) for arsenic in Florida lies within the range of arsenic background concentrations. The residential SCTL is also near the practical quantification limits using analytical procedures. Currently no standard protocols are available for determining arsenic background concentrations in urban soils, apart from site-specific cases. Therefore, a pilot study was conducted to develop and employ appropriate protocols to determine arsenic distribution in urban soils. This involved: site selection (e.g. size and sampling frame), sample collection (e.g. sampling technique), and statistical considerations (e.g. design). Factors such as ease of sample collection and maintaining anonymity of private properties were also considered as they influence the successful implementation of the study. Forty surface soil samples each were collected from five categories in three land use classes (residential-yard and right-of-way, commercial and public land-parks and public building), digested using EPA method 3051a and analysed using graphite furnace atomic absorption spectrometry. Experiences from the pilot study (e.g. complications during sample selection, digestion, data censoring etc.) were used in the development of the final protocol to be used in determining the distribution of arsenic in urban areas.  相似文献   

5.
Knowledge of arsenic background concentrations in urban soils is important for making remediation decisions. The soil cleanup target level (SCTL) for arsenic in Florida lies within the range of arsenic background concentrations. The residential SCTL is also near the practical quantification limits using analytical procedures. Currently no standard protocols are available for determining arsenic background concentrations in urban soils, apart from site-specific cases. Therefore, a pilot study was conducted to develop and employ appropriate protocols to determine arsenic distribution in urban soils. This involved: site selection (e.g. size and sampling frame), sample collection (e.g. sampling technique), and statistical considerations (e.g. design). Factors such as ease of sample collection and maintaining anonymity of private properties were also considered as they influence the successful implementation of the study. Forty surface soil samples each were collected from five categories in three land use classes (residential-yard and right-of-way, commercial and public land-parks and public building), digested using EPA method 3051a and analysed using graphite furnace atomic absorption spectrometry. Experiences from the pilot study (e.g. complications during sample selection, digestion, data censoring etc.) were used in the development of the final protocol to be used in determining the distribution of arsenic in urban areas.  相似文献   

6.
Background concentrations of soil arsenic have been used as an alternative soil cleanup criterion in many states in the U.S. This research addresses issues related to the interpretation of background concentrations of arsenic in near pristine soils in Florida. Total arsenic was measured in 448 taxonomic and geographic representative surface soil samples using USEPA Method 3052 (HCl-HNO3-HF, microwave digestion) and graphite furnace atomic absorption spectrophotometry analysis procedure. Values were log-normally distributed, with geometric mean and baseline concentration (defined as 95% of the expected range of background concentrations) providing the most satisfactory statistical results. An upper baseline concentration of 6.21 mg As/kg was estimated for undisturbed soils (n = 267) compared to 7.63 mg As/kg for disturbed soils (n = 181). Temporal trend of total soil arsenic concentrations from 1967 to 1989 paralleled decreased usage of arsenic in U.S. agriculture. Soil arsenic background concentrations were generally higher in south Florida than in north and central Florida, and associated with wet soils. Individual high arsenic sites were scattered throughout the state, but the most highly concentrated of these occurred in the Leon-Lee belt along the Ocala uplift district extending to the southwestern flatwoods district. Extrapolation of the data using a single arsenic value regardless of the taxonomic and geographical differences in soil arsenic distribution would underestimate potential arsenic contamination in upland soils.  相似文献   

7.
Because there is no specific legislative or regulatory guidance, there is no “right” way to allocate liability at Superfund sites. Allocation based on the cost of a remedy, and allocation based on the need for a remedy, i.e. risk-based allocation, represent two possibilities. Other allocation schemes can be located between these two philosophical poles. When waste streams and environmental impacts are qualitatively similar, allocation based solely on costs may make the most sense. When one or more potentially responsible parties (PRPs) have qualitatively different wastes or impacts, an allocation scheme based on both contribution to cost and to risk may be able to incorporate all PRPs. In any case, dissident PRPs, whose contribution to remedy costs is large but whose contribution to risk is small, may find satisfaction in the courts where there is precedent for risk-based allocation.  相似文献   

8.
Model development and testing tend to concentrate on how well models represent “reality” or reproduce measurements. However, there are many sources of uncertainty in modelling atmospheric pollution, and those responsible for decisions on abatement strategies need to use modelled scenarios without fear that inaccuracies and assumptions in the modelling may mislead them. This paper explores how techniques from risk assessment may be used to examine a modelling study systematically. Those assumptions and uncertainties which could have significant consequences, whether arising from data used, the modelling itself, or factors omitted and incompleteness, may be identified using hazard and operability studies. This helps to target supporting studies—possibly using more complex models, or Monte Carlo uncertainty analysis; and to indicate potential implications to the decision makers. As a case study we have used work undertaken on uncertainties with the Abatement Strategies Assessment Model for the task force on integrated assessment modelling under the convention on long-range transboundary air pollution of the UN Economic Commission for Europe.  相似文献   

9.
This paper outlines the state-of-the-art in discussing tests with functional endpoints for the soil compartment for regulatory purposes. In spite of the fact that organic matter decomposition is one of the most important functions in the soil ecosystem, this process has not been the subject of a test requirement for risk assessment of plant protection products until very recently. Since EU Directive 91/414/EEC concerning the placing of plant protection products on the market requires in its Annex III, point 10.6.2 (entitled “Effects on other soil, non-target macro-organisms”), the evaluation of effects on organic matter breakdown, there is an urgent need to fulfil this requirement. The use of functional endpoints in terrestrial model ecosystems is also under discussion in the framework of the notification process for chemicals. Four potential methods (bait-lamina-test, litterbag test, minicontainer test, cotton-strip assay) taken from ecological literature are briefly reviewed and evaluated in this paper using several defined criteria regarding their usefulness for registration purposes. In this context, areas for further research are identified. The insecticide Dimilin (a.i. diflubenzuron) is used as an example to show how such a test improves risk assessment. Therefore, it is strongly recommended that a guidance paper describing the main principles of at least one test method on organic matter decomposition should be written in order to realise the EU requirement.  相似文献   

10.
Environmental remediation decisions are driven by the need to minimize human health and ecological risks posed by environmental releases. The Risk Assessment Guidance for Superfund Sites enunciates the principles of exposure and risk assessment that are to be used for reaching remediation decisions for sites under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Experience with remediation management under CERCLA has led to recognition of some crucial infirmities in the processes for managing remediation: cleanup management policies are ad hoc in character, mandates and practices are strongly conservative, and contaminant risk management occurs in an artificially narrow context. The purpose of this case study is to show how a policy of risk-based decision-making was used to avoid customary pitfalls in site remediation. This case study describes the risk-based decision-making process in a remedial action program at a former manufactured gas plant site that successfully achieved timely and effective cleanup. The remediation process operated outside the confines of the CERCLA process under an administrative consent order between the utility and the New Jersey Department of Environmental Protection. A residential use end state was negotiated as part of this agreement. The attendant uncertainties, complications, and unexpected contingencies were overcome by using the likely exposures associated with the desired end state to structure all of the remediation management decisions and by collecting site-specific information from the very outset to obtain a detailed and realistic characterization of human health risks that needed to be mitigated. The lessons from this case study are generalizable to more complicated remediation cases, when supported by correspondingly sophisticated technical approaches.  相似文献   

11.
Although exposure to high levels of arsenic is associated with excess bladder cancer risk, lower exposures generally are not. This study represents the first biomonitoring of arsenic exposure in Tunisia and focuses on a possible association with bladder cancer risk. In this context, 124 male bladder cancer cases and 220 controls were recruited and blood samples were analyzed to determine the concentration of As. The study subjects were stratified into median groups based on concentrations of arsenic in their blood. Blood arsenic (B-As) was significantly two to threefold higher in bladder cancer cases than in controls (p?<?0.05). The arsenic concentrations were significantly higher among both smokers and workers in construction. However, neither drinking water nor seafood was found to be incriminated as exposure sources. The adjusted risk ratios for B-As concentration categories 0.1–0.67 and ≥0.67 μg/L were 0.18 (95% CI?=?0.014–2.95) and 2.44 (95% CI?=?1.11–5.35), respectively. Arsenic levels were not found to be associated with tumor grade or stage. The considerable risk in the category of highest cumulative exposure argues for an association between bladder cancer risk and low-level arsenic exposure. Future investigations with larger samples and using techniques that allow the distinction of the different arsenic species should better elucidate this association. Furthermore, the modulation of arsenic level according to the histological grade may be of potential to be used as a diagnostic marker of the disease process and its possible relationship etiologically.  相似文献   

12.
The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

13.
Abatement of soil-lead hazards may also reduce human exposure to other soil toxins, thereby achieving significant collateral benefits that are not accounted for today. This proposition was tested with the specific case of soil-arsenic, where 1726 residential soil samples were collected and analyzed for lead and arsenic. The study found that these two toxins coexisted in most samples, but their concentrations were weakly correlated, reflecting the differing sources for each toxin. Collateral benefits of 9% would be achieved during abatement of the lead-contaminated soils having elevated arsenic concentrations. However, a hidden hazard of 16% was observed by overlooking elevated arsenic concentrations in soils having lead concentrations not requiring abatement. This study recommends that soil samples collected under HUD programs should be collected from areas of lead and arsenic deposition and tested for arsenic as well as lead, and that soil abatement decisions consider soil-arsenic as well as soil-lead guidelines.  相似文献   

14.
Assessments of past environmental policies—termed accountability studies—contribute important information to the decision-making process used to review the efficacy of past policies, and subsequently aid in the development of effective new policies. These studies have used a variety of methods that have achieved varying levels of success at linking improvements in air quality and/or health to regulations. The Health Effects Institute defines the air pollution accountability framework as a chain of events that includes the regulation of interest, air quality, exposure/dose, and health outcomes, and suggests that accountability research should address impacts for each of these linkages. Early accountability studies investigated short-term, local regulatory actions (for example, coal use banned city-wide on a specific date or traffic pattern changes made for Olympic Games). Recent studies assessed regulations implemented over longer time and larger spatial scales. Studies on broader scales require accountability research methods that account for effects of confounding factors that increase over time and space. Improved estimates of appropriate baseline levels (sometimes termed “counterfactual”—the expected state in a scenario without an intervention) that account for confounders and uncertainties at each link in the accountability chain will help estimate causality with greater certainty. In the direct accountability framework, researchers link outcomes with regulations using statistical methods that bypass the link-by-link approach of classical accountability. Direct accountability results and methods complement the classical approach. New studies should take advantage of advanced planning for accountability studies, new data sources (such as satellite measurements), and new statistical methods. Evaluation of new methods and data sources is necessary to improve investigations of long-term regulations, and associated uncertainty should be accounted for at each link to provide a confidence estimate of air quality regulation effectiveness. The final step in any accountability is the comparison of results with the proposed benefits of an air quality policy.

Implications: The field of air pollution accountability continues to grow in importance to a number of stakeholders. Two frameworks, the classical accountability chain and direct accountability, have been used to estimate impacts of regulatory actions, and both require careful attention to confounders and uncertainties. Researchers should continue to develop and evaluate both methods as they investigate current and future air pollution regulations.  相似文献   


15.
ABSTRACT

The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

16.
An odor of unknown origin described as a “tar” or “asphalt” smell has become unbearable for many of Globeville, CO, residents over the past few years. Residents report during odor events burning eyes and throat, headaches, skin irritation, and problems sleeping. This study was undertaken to identify the potential sources of the odor and the concentrations of air pollutants making up the odor by conducting meteorological correlations and sampling for a panel of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the neighborhood and near suspected sources. Wind speed and direction data collected every 1 min in the neighborhood indicate that when the odor is noticed, the community is directly downwind of a wood preservation facility and an asphalt roofing facility. Air samples collected during high-intensity odor events have shown concentrations of methylene chloride, hexane, toluene, naphthalene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, each at least two times higher than background concentrations. Naphthalene and the other PAHs are known pollutants emitted from wood treatment processes, and are known to have a coal tar odor. Naphthalene was present in a sample collected directly adjacent to the Koppers facility and was not present in any background samples. Single-compound odor and health thresholds, however, were never surpassed. Given the technical and regulatory challenges of sampling odors and controlling emissions, it is recommended that Globeville residents and neighboring industry pursue a “good neighbor policy” to solve the odor issue. Specific offending industrial processes could be identified for which there exist cost-effective control technologies that would reduce exposure to odors and air toxics in Globeville.

Implications: Meteorological correlations and samples of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the Globeville, CO, neighborhood and near suspected sources during odor events indicate potential industrial sources of a transient and noxious odor. Legislative approaches have proven unfruitful and no health or odor thresholds were typically violated. New approaches are warranted to address odor mixture effects in neighborhoods near industrial facilities.  相似文献   

17.
Acid washing and stabilization of an artificial arsenic-contaminated soil.   总被引:16,自引:0,他引:16  
An acid-washing process was studied on a laboratory scale to extract the bulk of arsenic(V) from a highly contaminated Kuroboku soil (Andosol) so as to minimize the risk of arsenic to human health and the environment. The sorption and desorption behavior of arsenic in the soil suggested the possibility of arsenic leaching under acidic conditions. Artificially contaminated Kuroboku soil (2830 mg As/kg soil) was washed with different concentrations of hydrogen fluoride, phosphoric acid, sulfuric acid, hydrogen chloride, nitric acid, perchloric acid, hydrogen bromide, acetic acid, hydrogen peroxide, 3:1 hydrogen chloride-nitric acid, or 2:1 nitric acid-perchloric acid. Phosphoric acid proved to be most promising as an extractant, attaining 99.9% arsenic extraction at 9.4% acid concentration in 6 h. Sulfuric acid also attained high percentage extraction. The arsenic extraction by these acids reached equilibrium within 2 h. Elovich-type equation best described most of the kinetic data for dissolution of soil components as well as for extraction of arsenic. Dissolution of the soil components could be minimized by ceasing acid washing in 2 h. The acid-washed soil was further stabilized by the addition of lanthanum, cerium, and iron(III) salts or their oxides or hydroxides which form insoluble complex with arsenic. Both salts and oxides of lanthanum and cerium were effective in immobilizing arsenic in the soil attaining less than 0.01 mg/l As in the leaching test.  相似文献   

18.
Chromated copper arsenate (CCA) treated wood has been used for more than 50 years. Recent attention has been focused on appropriate disposal of CCA-treated wood when its service life ends. Groups in the US and Europe concerned with the possibility of arsenic migration to groundwater from disposed CCA-treated wood have proposed that consumers be required to dispose of the wood as a hazardous waste, in the most protective of landfills. We examined available data for evidence of arsenic migration from unlined construction and demolition (C&D) debris landfills in Florida, where CCA-treated wood is disposed. Florida was chosen because soil, groundwater, landfill design, weather, and levels of CCA-treated wood use make the state a uniquely sensitive indicator for observing arsenic migration from CCA-treated wood disposal sites, should it occur. We developed and quality-checked a CCA-treated wood disposal model to estimate the amount of wood and associated arsenic disposed. By 2000, an estimated 13 million kg of arsenic in CCA-treated wood was disposed in Florida; however, groundwater monitoring data do not indicate that arsenic is migrating from unlined C&D landfills. Our results provide evidence that highly stringent regulation of CCA-treated wood disposal, such as treatment as a hazardous waste, is unnecessary.  相似文献   

19.
Decisions in ecological risk management for chemical substances must be made based on incomplete information due to uncertainties. To protect the ecosystems from the adverse effect of chemicals, a precautionary approach is often taken. The precautionary approach, which is based on conservative assumptions about the risks of chemical substances, can be applied selecting management models and data. This approach can lead to an adequate margin of safety for ecosystems by reducing exposure to harmful substances, either by reducing the use of target chemicals or putting in place strict water quality criteria. However, the reduction of chemical use or effluent concentrations typically entails a financial burden. The cost effectiveness of the precautionary approach may be small. Hence, we need to develop a formulaic methodology in chemical risk management that can sufficiently protect ecosystems in a cost-effective way, even when we do not have sufficient information for chemical management. Information-gap decision theory can provide the formulaic methodology. Information-gap decision theory determines which action is the most robust to uncertainty by guaranteeing an acceptable outcome under the largest degree of uncertainty without requiring information about the extent of parameter uncertainty at the outset. In this paper, we illustrate the application of information-gap decision theory to derive a framework for setting effluent limits of pollutants for point sources under uncertainty. Our application incorporates a cost for reduction in pollutant emission and a cost to wildlife species affected by the pollutant. Our framework enables us to settle upon actions to deal with severe uncertainty in ecological risk management of chemicals.  相似文献   

20.
Soil investigations near a former smelter have revealed that historic use of arsenical pesticides has contributed significantly to anthropogenic background concentrations of arsenic on certain residential properties in Denver, Colorado, U.S.A. Remedial investigation data, based on samples collected in relatively undisturbed locations, had previously indicated that the "upper limit" of background arsenic concentrations was 28 mg/kg in the site vicinity. This value compares reasonably well with more regional data, which indicate increasing arsenic concentrations moving from rural to urban land use. Soil sampling during cleanup, however, revealed the presence of arsenic concentrations of a few hundred to more than 1000 mg/kg on a large number of residential lawns due to historic applications of a crabgrass killer, which was missed by the earlier investigation samples because of the sampling bias toward undisturbed land. Data from over 20,000 soil samples now show that several different populations comprise urban background levels of arsenic and that these populations may be stratified by land use and have spatial patterns that should be considered during any background study. A variety of forensic techniques, including spatial analysis, arsenic speciation, and calculation of metals ratios were necessary to separate the smelter impacts from pesticide impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号