共查询到20条相似文献,搜索用时 15 毫秒
1.
《Atmospheric environment (Oxford, England : 1994)》2007,41(34):7351-7368
Two-stage aerosol samples (PM10–2.5 and PM2.5) were collected at a coastal rural site located in the northeastern Mediterranean, between April 2001 and 2002. A total of 562 aerosol samples were analyzed for trace elements (Fe, Ti, Mn, Ca, V, Ni, Zn, Cr) and water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, Br−, NO3−, SO42−, C2O42− and MS−:methane sulfonate). PM10, crustal elements, sea salt aerosols and NO3− were mainly associated with the coarse mode whereas non-sea salt (nss)SO42−, C2O42−; MS−, NH4+, Cr and Ni were found predominantly in the fine fraction. Concentrations of aerosol species exhibited orders of magnitude change from day to day and the aerosol chemical composition is heavily affected by dust events under the influence of airflow from North Africa. During the sampling period, 11 specific mineral dust events of duration varying from 1 day to a week have been identified and their influence on the chemical composition of aerosols has been studied in detail. Ionic balance analysis performed in the coarse and fine aerosol fractions indicated anion and cation deficiency due to CO32− and H+, respectively. A relationship between nssSO42− and NH4+ denoted that sulfate particles were partially neutralized (70%) by ammonium. Excess-K/BC presented two distinct ratios for winter and summer, indicating two different sources: fossil fuel burning in winter and biomass burning in summer. 相似文献
2.
Trends in fine particle concentration and chemical composition in southern California 总被引:14,自引:0,他引:14
Christoforou CS Salmon LG Hannigan MP Solomon PA Cass GR 《Journal of the Air & Waste Management Association (1995)》2000,50(1):43-53
Airborne fine particle mass concentrations in Southern California have declined in recent years. Trends in sulfate and elemental carbon (EC) particle concentrations over the period 1982-1993 are consistent with this overall improvement in air quality and help to confirm some of the reasons for the changes that are seen. Fine particle sulfate concentrations have declined as a strict sulfur oxides (SOx) emission control program adopted in 1978 was implemented over time. Fine particle elemental (black) carbon concentrations have declined over a period when newer diesel engines and improved diesel fuels have been introduced into the vehicle fleet. Organic aerosol concentrations have not declined as rapidly as the EC particle concentrations, despite the fact that catalyst-equipped cars having lower particle emission rates were introduced into the vehicle fleet alongside the diesel engine improvements mentioned above. This situation is consistent with the growth in population and vehicle miles traveled in the air basin over time. Fine particle ammonium nitrate in the Los Angeles area atmosphere contributes more than half of the fine aerosol mass concentration on the highest concentration days of the year, emphasizing both the need for accurate aerosol nitrate measurements and the likely importance of deliberate control of aerosol nitrate as a part of any serious further fine particle control program for the Los Angeles area. 相似文献
3.
《Atmospheric environment (Oxford, England : 1994)》2001,35(32):5381-5391
During April 1996–June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996–May 1997. The average PM2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m3, and the PM2.3−15 (coarse particle) concentrations were 12.8 and about 5 μg/m3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50–60%.The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site.Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site.Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na+, Cl− and Mg2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed. 相似文献
4.
《Atmospheric environment (Oxford, England : 1994)》2005,39(2):297-306
We used aerosol data from 4 sites along the west coast of the U.S. to evaluate the role of transport, seasonal pattern, chemical composition and possible trends in the marine background aerosol for the Pacific Northwest. For the Crater Lake samples, the data have been segregated using 10 day back isentropic trajectories to evaluate the role of transport. Our analysis of the segregated data indicates that the trajectories can successfully separate “locally influenced” from “marine background” aerosol, but are not able to identify a significant difference in the mean concentrations during marine vs Asian transport pathways.The background marine aerosol has an annual mean and median concentrations of 2.0 and 1.5 μg m−3, respectively, for particles less than 2.5 μm diameter. There is a seasonal pattern in all components of the aerosol mass, with a summer maximum and winter minimum. This pattern is most likely due to the strong seasonal pattern in precipitation, which peaks in winter, combined with enhanced sources in summer. The Crater Lake marine aerosol composition is dominated by organics (∼40% by mass), with smaller contributions from sulfates, mineral dust and elemental carbon. Analysis of the background marine aerosol found no apparent trend since 1988. This is in contrast to results reported by Prospero et al. (J. Geophys. Res. 108 (2003) 4019) for nss-SO42− samples from Midway Island in the North Pacific. Comparison of the mean concentrations for each site shows that the Midway samples are significantly more influenced by Asian industrial sources of sulfur, compared to Crater Lake, which implies a substantial loss of nss-SO42− from Asian sources that occurs during transit across the Pacific to Crater Lake due to precipitation scavenging. 相似文献
5.
《Atmospheric environment (Oxford, England : 1994)》2002,36(27):4367-4374
Concentrations of size fractionated particulate sodium and potassium were measured in both marine and urban air. Marine air sampling was conducted during a cruise on R/V Hakuho-maru in the northwestern North Pacific in the summer of 1998. Urban air sampling was performed in the central part of Tokyo in 1997 and 1998. The fine sodium concentration (D<1.1 μm) in “Urban” air (180 ng m−3) was 3 times higher than that in “Marine” air (56 ng m−3). In the urban air samples, the size distributions of sodium and potassium showed bimodal peaks in the fine particle range (D<1.1 μm) and in the coarse particle range (D>1.1 μm). The existence of anthropogenic sodium in the fine particle range was detected in the urban air. The K/Na weight ratios in the fine particle range of the urban air (1.8–2.7) was 50–75 times higher than that in seawater (0.036). Potassium in the urban air is thought to be derived largely from anthropogenic sources. In the urban air samples, a high correlation between fine sodium and fine potassium concentrations suggests that they have the same anthropogenic source. Reevaluating the K/Na ratios in marine air to be relatively higher than that in seawater, we can estimate that several percents of anthropogenic sodium can be transported from land to remote marine air. 相似文献
6.
Eugene Kim Katarzyna Turkiewicz Sylvia A. Zulawnick Karen L. Magliano 《Atmospheric environment (Oxford, England : 1994)》2010,44(26):3095-3100
PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) speciation data collected between 2003 and 2005 at two United State Environmental Protection Agency (US EPA) Speciation Trends Network monitoring sites in the South Coast area, California were analyzed to identify major PM2.5 sources as a part of the State Implementation Plan development. Eight and nine major PM2.5 sources were identified in LA and Rubidoux, respectively, through PMF2 analyses. Similar to a previous study analyzing earlier data (Kim and Hopke, 2007a), secondary particles contributed the most to the PM2.5 concentrations: 53% in LA and 59% in Rubidoux. The next highest contributors were diesel emissions (11%) in LA and Gasoline vehicle emissions (10%) in Rubidoux. Most of the source contributions were lower than those from the earlier study. However, the average source contributions from airborne soil, sea salt, and aged sea salt in LA and biomass smoke in Rubidoux increased.To validate the apportioned sources in this study, PMF2 results were compared with those obtained from EPA PMF (US EPA, 2005). Both models identified the same number of major sources and the resolved source profiles and contributions were similar at the two monitoring sites. The minor differences in the results caused by the differences in the least square algorithm and non-negativity constraints between two models did not affect the source identifications. 相似文献
7.
Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality. 相似文献
8.
Tanner RL Parkhurst WJ 《Journal of the Air & Waste Management Association (1995)》2000,50(8):1299-1307
Fine particles in the atmosphere have elicited new national ambient air quality standards (NAAQS) because of their potential role in health effects and visibility-reducing haze. Since April 1997, Tennessee Valley Authority (TVA) has measured fine particles (PM2.5) in the Tennessee Valley region using prototype Federal Reference Method (FRM) samplers, and results indicate that the new NAAQS annual standard will be difficult to meet in this region. The composition of many of these fine particle samples has been determined using analytical methods for elements, soluble ions, and organic and elemental carbon. The results indicate that about one-third of the measured mass is SO4(-2), one-third is organic aerosol, and the remainder is other materials. The fraction of SO4(-2) is highest at rural sites and during summer conditions, with greater proportions of organic aerosol in urban areas throughout the year. Additional measurements of fine particle mass and composition have been made to obtain the short-term variability of fine mass as it pertains to human exposure. Measurements to account for semi-volatile constituents of fine mass (nitrates, semi-volatile organics) indicate that the FRM may significantly under-measure organic constituents. The potentially controllable anthropogenic fraction of organic aerosols is still largely unknown. 相似文献
9.
Esther Coz Begoña Artíñano Lisa M. Clark Mark Hernandez Allen L. Robinson Gary S. Casuccio Traci L. Lersch Spyros N. Pandis 《Atmospheric environment (Oxford, England : 1994)》2010,44(32):3952-3962
Scanning electron microscopy coupled to energy-dispersive x-ray spectroscopy (SEM/EDX) was used to quantify individual bioparticles in PM2.5 samples collected during the Pittsburgh Air Quality Study. Microscopy-based estimates of primary biogenic organic aerosol (PBOA) mass were compared to carbohydrate mass associated with PM2.5. Carbohydrates show substantial seasonal variations, with higher concentrations in the spring and the fall. During the summer, carbohydrates were about 30% of the estimated PBOA concentrations, but in the winter carbohydrate concentrations often greatly exceeded the PBOA mass estimate. Spores and insect detritus were the most abundant PBOA types in the summer samples, while winter samples were comprised predominantly of a mixture of microorganisms, insect and vegetative detritus. During the summer PBOA contributed on average 6.9 ± 5.4% by mass of the PM2.5 versus 3.3 ± 1.4% of the PM2.5 mass during the winter. 相似文献
10.
Jean-Daniel Paris Mikhail Yu. Arshinov Philippe Ciais Boris D. Belan Philippe Nédélec 《Atmospheric environment (Oxford, England : 1994)》2009,43(6):1302-1309
Ultra-fine particle number concentrations were measured over Siberia during two large-scale airborne measurement campaigns in April and September 2006. During both campaigns, an aircraft flew between Novosibirsk and Yakutsk, collecting every 200 km vertical profiles up to 7 km. This dataset was completed by 5 years of monthly profiles above Novosibirsk. Particle number concentration was measured in the size ranges 3–70 and 70–200 nm, along with other tracers. Free troposphere (FT) particle concentrations (N3–200) varied between 60 and 460 cm?3, inferior to boundary layer concentrations (100–7000 cm?3). In April, high concentrations of ~500 cm?3 were observed in a polluted air mass recently uplifted at 5–6 km altitude over eastern Siberia, with no sign of significant new particle formation. In September, particle concentrations decreased with altitude, but with a steeper gradient in N70–200 compared to N3–70, the latter accounting for 90% of the total particle concentration in the free troposphere at 6–7 km altitude. Because ultra-fine particles presumably have short lifetimes, these observed particles could have been formed in situ in the clean Siberian atmosphere. Two cases of possible nucleation with high concentration and N3–70/N70–200 ratios are reported for the September campaign, in the upper troposphere and in cloud outflow in the mid-troposphere. In the seasonal analysis, a FT N3–70 maximum is found in July–August between 6 and 7 km altitude, with N3–70 accounting for ~90% of N3–200 supporting the hypothesis of in situ formation in the FT. A secondary FT maximum of N3–70 was identified later in autumn. In the boundary layer, seasonally maximum N3–70 concentrations were found over Novosibirsk in May and September, but not in summer, possibly due to scavenging by precipitations and a large condensational sink from biomass burning aerosols. Our dataset has a limited size resolution and no speciation capability; more investigation is thus required to understand the conditions leading to in situ nucleation processes in the Siberian air shed. 相似文献
11.
《Atmospheric environment(England)》1985,19(2):265-276
The measurements during episodic periods in the St. Louis area in 1975 and 1976 of fine particle sulfur, fine particle mass and ozone are related. Such episodes are concentrated into time periods in the late spring and summer months. During such episodes, particle sulfur is the major constituent of the fine particle mass. The sum of the non-sulfur species in the fine particle mass do not show similar episodic patterns as the fine particle sulfur.Elevated concentrations of fine particle sulfur and of ozone usually occur together within the same episodic time periods. However, the day to day variations in fine particle sulfur and of ozone do differ somewhat within these time periods.Both fine particle sulfur and ozone show the influence of regional scale and local scale atmospheric photochemical processes on their formation during episodic time periods. Regional scale boundary layer processes frequently appear to contribute more to fine particle sulfur concentrations than to ozone formation. Local scale primary emissions also contribute to the ambient fine particle sulfur concentrations at core urban locations. 相似文献
12.
Kim D Sass-Kortsak A Purdham JT Dales RE Brook JR 《Journal of the Air & Waste Management Association (1995)》2005,55(8):1134-1146
Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor. 相似文献
13.
Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM2.5) concentration in moving cars with different window opening conditions. The PM2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM2.5 concentrations were 16–17 μg m?3. Regardless of different window opening conditions, the PM2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM2.5 levels were 506–1307 μg m?3 with different window opening conditions. When smoking was ceased, the average PM2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m?3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy. 相似文献
14.
J D Yanosky D L MacIntosh 《Journal of the Air & Waste Management Association (1995)》2001,51(6):878-884
A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3). 相似文献
15.
Friend AJ Ayoko GA Jayaratne ER Jamriska M Hopke PK Morawska L 《Environmental science and pollution research international》2011,19(7):2942-2950
Purpose
To investigate the significance of sources around measurement sites, assist the development of control strategies for the important sources and mitigate the adverse effects of air pollution due to particle size.Methods
In this study, sampling was conducted at two sites located in urban/industrial and residential areas situated at roadsides along the Brisbane Urban Corridor. Ultrafine and fine particle measurements obtained at the two sites in June?CJuly 2002 were analysed by positive matrix factorization.Results
Six sources were present, including local traffic, two traffic sources, biomass burning and two currently unidentified sources. Secondary particles had a significant impact at site 1, while nitrates, peak traffic hours and main roads located close to the source also affected the results for both sites.Conclusions
This significant traffic corridor exemplifies the type of sources present in heavily trafficked locations and future attempts to control pollution in this type of environment could focus on the sources that were identified. 相似文献16.
Assessing the impact of differential measurement error on estimates of fine particle mortality 总被引:2,自引:0,他引:2
In air pollution epidemiology, error in measurements of correlated pollutants has been advanced as a reason to distrust regressions that find statistically significant weak associations. Much of the related debate in the literature and elsewhere has been qualitative. To promote quantitative evaluation of such errors, this paper develops an air pollution time-series model based on correlations among unit-normal variables. Assuming there are no other sources of bias present, the model shows the expected amount of relative bias in the regression coefficients of a bivariate regression of coarse and fine particulate matter measurements on daily mortality. The model only requires information on instrumental error and spatial variability, along with the observed regression coefficients and information on the true fine-course correlation. Analytical results show that if one pollutant is truly more harmful than the other, then it must be measured more precisely than the other in order not to bias the ratio of the fine and course regression coefficients. Utilizing published data, a case study of the Harvard Six-Cities study illustrates use of the model and emphasizes the need for data on spatial variability across the study area. Current epidemiology time-series regressions can use this model to address the general concern of correlated pollutants with differing measurement errors. 相似文献
17.
Pardo LH McNulty SG Boggs JL Duke S 《Environmental pollution (Barking, Essex : 1987)》2007,149(3):293-302
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988. 相似文献
18.
Robinson AL Grieshop AP Donahue NM Hunt SW 《Journal of the Air & Waste Management Association (1995)》2010,60(10):1204-1222
Atmospheric transformations determine the contribution of emissions from combustion systems to fine particulate matter (PM) mass. For example, combustion systems emit vapors that condense onto existing particles or form new particles as the emissions are cooled and diluted. Upon entering the atmosphere, emissions are exposed to atmospheric oxidants and sunlight, which causes them to evolve chemically and physically, generating secondary PM. This review discusses these transformations, focusing on organic PM. Organic PM emissions are semi-volatile at atmospheric conditions and thus their partitioning varies continuously with changing temperature and concentration. Because organics contribute a large portion of the PM mass emitted by most combustion sources, these emissions cannot be represented using a traditional, static emission factor. Instead, knowledge of the volatility distribution of emissions is required to explicitly account for changes in gas-particle partitioning. This requires updating how PM emissions from combustion systems are measured and simulated from combustion systems. Secondary PM production often greatly exceeds the direct or primary PM emissions; therefore, secondary PM must be included in any assessment of the contribution of combustion systems to ambient PM concentrations. Low-volatility organic vapors emitted by combustion systems appear to be very important secondary PM precursors that are poorly accounted for in inventories and models. The review concludes by discussing the implications that the dynamic nature of these PM emissions have on source testing for emission inventory development and regulatory purposes. This discussion highlights important linkages between primary and secondary PM, which could lead to simplified certification test procedures while capturing the emission components that contribute most to atmospheric PM mass. 相似文献
19.
《Atmospheric environment (Oxford, England : 1994)》2002,36(38):5751-5758
Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths. 相似文献
20.
大气细粒子的快速捕集及化学成分在线分析方法研究 总被引:5,自引:0,他引:5
本文介绍了一种新型的大气细粒子快速捕集及其化学成分在线分析方法。该方法中大气细粒子与过饱和水蒸气绝热混和而增长成大粒子 ,并在气流的带动下惯性撞击到一垂直玻璃板上 ,一含有内标物的去离子水流自上而下将撞击到玻璃板上的粒子收集 ,收集液被直接输送到离子色谱、总有机碳分析仪 ,在线分析其中的化学成分。该方法每 12min可完成单个样品分析 ,每小时可连续采集分析 5个样品。离子色谱最低检测限约为 0 .0 5 μg/m3(NH+4 )到 0 .2 0 μg/m3(SO2 -4 ) ,不确定度约为 3 % ,TOC最低检测限为 5× 10 -5μg/m3,不确定度约为 3 %。真实的大气细粒子观测结果表明 ,该方法快速、简捷、灵敏度高 ,是实时监测大气中细粒子化学成分的有效工具 相似文献