首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports a study designed to test, evaluate and compare micro-meteorological methods for determining the particle number flux above forest canopies. Half-hour average particle number fluxes above a representative broad-leaved forest in Denmark derived using eddy covariance range from -7x10(7) m(-2) s(-1) (1st percentile) to 5x10(7) m(-2) s(-1) (99th percentile), and have a median value of -1.6x10(6) m(-2) s(-1). The statistical uncertainties associated with the particle number flux estimates are larger than those for momentum fluxes and imply that in this data set approximately half of the particle number fluxes are not statistically different to zero. Particle number fluxes from relaxed eddy accumulation (REA) and eddy covariance are highly correlated and of almost identical magnitude. Flux estimates from the co-spectral and dissipation methods are also correlated with those from eddy covariance but exhibit higher absolute magnitude of fluxes.  相似文献   

2.
Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug–Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m?2 s?1 around noon. An average fine particle flux of 0.05 ± 0.10 106 m?2 s?1 was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes.  相似文献   

3.
Summertime nitric acid concentrations over a deciduous forest in the midwestern United States are reported, which range between 0.36 and 3.3 μg m−3. Fluxes to the forest are computed using the relaxed eddy accumulation technique and gradient methods. In accord with previous studies, the results indicate substantial uncertainties in the gradient-based calculations. The relaxed eddy accumulation (REA) derived fluxes are physically reasonable and are shown to be of similar magnitude to dry deposition estimates from gradient sampling. The REA derived mean deposition velocity is approximately 3 cm s−1, which is also comparable to growing season estimates derived by Meyers et al. for a similar deciduous forest. Occasional inverted concentration gradients and fluxes are observed but most are not statistically significant. Data are also presented that indicate substantial through canopy penetration of nitric acid.  相似文献   

4.
The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a Petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard, active and passive samplers provide typical values of airborne concentrations and specific deposition fluxes. Velocity and turbulence data from field studies are used as input in large eddy simulations of the process, and estimates of deposition fluxes are of the same order of magnitude as those deduced from field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows.  相似文献   

5.
Long-term eddy covariance particle flux measurements for the size range starting from 10 nm were performed at a boreal forest site in Southern Finland. The large variability in turbulent flux estimates is inherent to the particle flux observations and thus long-term particle flux measurements enable to obtain statistically significant results by a suitable averaging. The particle flux random errors were estimated and a parameterisation for the integral time scale of turbulent flux was proposed. Application of flux errors for classification according to statistical significance of single flux values leads to systematically different deposition estimates on ensemble average basis. This must be avoided for determination of unbiased average deposition fluxes. The role of storage term in particle deposition evaluation was analysed. It was empirically determined that the method of storage term estimation discussed by [Finnigan, J., 2006. The storage term in eddy flux calculations. Agric. Forest Meteorol., 136, 108–113.] is not sensitive to the selection of the concentration averaging window in both ends of the flux averaging period. It is argued that the storage change in real atmospheric conditions results from boundary layer development as well as source–sink activity and therefore the filtering effect arising from averaging the concentration is of less importance. Diurnal, seasonal and annual variability of particle fluxes was analysed and it was observed that particle deposition rates are higher in winter. More detailed analysis of functional dependencies of particle deposition on environmental factors as well as dependence on size will be done in the second part of the paper.  相似文献   

6.
The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons and different meteorological situations. Different deposition characteristics were observed, depending on the ammonia concentration and the relative humidity. At conditions with westerly winds, the wind brings air masses from the North Sea with low concentration levels of ammonia to the site, while at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest, i.e. an ammonia concentration below which the trees and/or the surface emit ammonia due to an equilibrium with the ammonia inside the needles or on the surface. Emission of ammonia was also observed at relatively high ammonia concentration levels (above 2 μg NH3–N m-3), mainly during one measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during conditions with relative humidity above 80% or at ammonia concentrations moderate higher than a given (temperature dependent) compensation point. During stable conditions some observations revealed that the gradient above the canopy not necessarily represents the exchange with the canopy.  相似文献   

7.
Yang HH  Hsieh LT  Lin MC  Mi HH  Chen PC 《Chemosphere》2004,54(3):369-378
Sulfate-containing aerosol (SCA) dry deposition at the highway intersection, coastal location, and suburban area in Taiwan were analyzed and compared. Sampling was accomplished with a surrogate surface technique. Samples particles were coated with barium chloride (BaCl(2)) in a vacuum evaporator and then exposed to a relative humidity of 85% for 2 h to form distinctive products of SCAs. Treated samples were examined by a scanning electron microscopy. SCA dry deposition fluxes were 10.2, 4.1, 3.4 microgm(-2)s(-1) and nonsulfate-containing aerosol (NSCA) dry deposition fluxes were 23.3, 8.2, 13.5 microgm(-2)s(-1) at the highway intersection, coastal, and suburban areas. At the highway intersection, both SCA and NSCA dry deposition fluxes were much higher than those at the other two sites. The dry deposition of particles was also analyzed with a traditional technique. The number median diameters (NMDs) of SCA were 0.41, 0.82, and 1.2 mum at the highway intersection, coastal, and suburban sites, respectively. The highway intersection site had a small NMD, which showed that most sulfate-containing deposited aerosols existed in fine diameter range. The mass median diameters (MMDs) of SCA were 8.8, 19.5, and 14.9 mum at the highway intersection, coastal, and suburban sites, which were much higher than NMDs. Average numbers of SCAs in total particulate were 33%, 33%, and 22% at the highway intersection, coastal and suburban areas Most deposited particulates were nonsulfate-containing at the three sampling sites. SCAs less than 10 mum contributed 29%, 8%, and 7% to the total dry deposition at the highway intersection, coastal, and suburban areas, respectively. The contribution of fine particulate was significantly higher at the highway intersection site.  相似文献   

8.
Ozone and energy fluxes have been measured using the eddy covariance technique, from June to December 2004 in Castelporziano near Rome (Italy), and compared to similar measurements made in the previous year. The studied ecosystem consisted in a typical Mediterranean Holm oak forest. Stomatal fluxes have been calculated using the resistance analogy and by inverting the Penmann-Monteith equation. Results showed that the average stomatal contribution accounts for 42.6% of the total fluxes. Non-stomatal deposition proved to be enhanced by increasing leaf wetness and air humidity during the autumnal months. From a comparison of the two years, it can be inferred that water supply is the most important limiting factor for ozone uptake and that prolonged droughts alter significantly the stomatal conductance, even 2 months after the soil water content is replenished. Ozone exposure, expressed as AOT40, behaves similarly to the cumulated stomatal flux in dry conditions whereas a different behaviour for the two indices appears in wet autumnal conditions. A difference also occurs between the two years.  相似文献   

9.
The physiological and physical processes controlling ozone dry deposition to vegetated surfaces are still not fully understood. In particular, the role of the understorey and the possible action of dew on ozone deposition have not received much attention so far. This paper presents the results of an experiment aimed at quantifying ozone dry deposition to a maritime pine forest in the “Les Landes” area in France. Ozone deposition fluxes were measured using the eddy-covariance technique above and within the canopy. We investigate the factors acting on ozone deposition in both dew-wetted and dry conditions. The values obtained for the ozone deposition velocity are well in the range of previously published measurements over coniferous forests. For the present forest, ozone uptake by the understorey is a significant portion of ozone deposition to the whole pine stand. The understorey contributes more to the overall ozone flux than to the other measured scalar fluxes (sensible heat and water vapour). During dry nights the surface conductance for ozone and the friction velocity are strongly correlated, showing that ozone deposition is largely controlled by dynamical processes. During the day, in dry conditions, the canopy stomatal conductance is the major parameter controlling ozone deposition. However, in winter, when the stomatal conductance is low, the influence of dynamical processes persists during day-time. It is also found that surface wetness associated with dew significantly enhances ozone deposition, during the night as well as in the morning.  相似文献   

10.
Correa O  Raun L  Rifai H  Suarez M  Holsen T  Koenig L 《Chemosphere》2006,64(9):1550-1561
Dry and wet deposition fluxes of the PCDD/F substituted congeners were measured at two different sites (Clinton Drive and Lang Road) in Houston, TX between December 2003 and April 2004. Average total dry deposition fluxes of 351 and 125pgm(-2)d(-1) were found at Clinton Drive and Lang Road, respectively. A wet deposition flux of 2.873pgm(-2)d(-1) was measured at the Clinton Drive site. The results indicated that the dry deposition process exhibited spatial variability. In addition, the results also demonstrated that precipitation, although intermittent, is the most important mechanism for the removal of dioxins from atmosphere in the area of study. Combining the contributions of the dry and wet deposition processes at Clinton Drive resulted in a total bulk deposition flux of 527pg m(-2)d(-1). The total dry and wet deposition fluxes were dominated by OCDD followed by 1,2,3,4,6,7,8-HpCDD at both sites. Overall average dry deposition velocities of 0.35 and 0.15cms(-1) were calculated at Clinton Drive and Lang Road sites, respectively. While these velocities were similar to velocities observed in other geographical areas, the contribution of OCDD to the total deposition flux in Houston was significantly higher, probably reflecting the unique nature and character of Houston dioxin sources. The results also showed that lower chlorinated congeners, primarily present in the gas phase, are more likely to be removed from the atmosphere by precipitation. Relationships between the detected congeners in the dry deposition samples and other routinely measured air pollutants/meteorological parameters were found. The results showed that in general, the dry deposition of these congeners was consistently negatively correlated with SO(2) and NO(x) concentrations in the air and positively correlated with relative humidity. However, more research is needed to ascertain those correlations.  相似文献   

11.
Trace element dry deposition fluxes were measured using a smooth, greased, knife-edge surrogate surface (KSS) holding greased Mylar strips in Bursa, Turkey. Sampling program was conducted between October 2002 and June 2003 and 46 dry deposition samples were collected. The average fluxes of crustal metals (Mg, Ca, and Fe) were one to four orders of magnitude higher than the fluxes of anthropogenic metals. Trace element fluxes ranged from 3 (Cd) to 24,230 (Ca) microg m(-2) d(-1). The average trace element dry deposition fluxes measured in this study were similar to those measured in other urban areas. In addition, ambient air samples were also collected simultaneously with flux samples and concentrations of trace elements, collected with a TSP sampler, were between 0.7 and 4900 ng m(-3) for Cd and Ca, respectively. The overall trace element dry deposition velocities, calculated by dividing the fluxes to the particle phase concentrations ranged from 2.3+/-1.7 cm s(-1) (Pb) to 11.1+/-6.4 cm s(-1) (Ni). These values are in good agreement with the values calculated using similar techniques. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EFs) calculated relative to the average crustal composition. Low EFs for dry deposition samples were calculated. This is probably due to contamination of local dust and its important contribution to the collected samples.  相似文献   

12.
The overall atmospheric behavior of PCDDs/PCDFs in the Kanto region, Japan, was simulated by a one-compartment box model. For each homologue the relative significance and temperature dependences of dry deposition, wet deposition, degradation, and advection in both gas and particulate phases were examined and compared. The results of the model calculation suggested that the rates for dry deposition are comparable to those for wet deposition, and the rates for advection are comparable to those for bulk (dry+wet) depositions in the Kanto region. On the other hand, the rates of degradation for PCDDs/PCDFs in the atmosphere in the Kanto region would be negligible. The emission rates and the bulk deposition fluxes in the entire Kanto region estimated by the model calculation based on observed air concentrations were 0.084-0.90 kg-TEQ/month and 0.045-0.43 kg-TEQ/month, respectively. These estimated emission rates and bulk deposition fluxes were slightly higher than the estimated emission rate based on observed emission concentrations and the estimated bulk deposition fluxes based on observed deposition fluxes collected on water deposition surface, respectively. This study showed the model calculation can be available for understanding of the overall atmospheric behavior, verification of the source inventory, and estimation of deposition flux on the actual environment including various deposition surfaces.  相似文献   

13.
Much attention is being directed to the measurement and modeling of surface-atmosphere exchanges of CO2 for different surface types. However, as yet, few measurements have been conducted in cities, even though these environments are widely acknowledged to be major sources of anthropogenic CO2. This paper highlights some of the challenges facing micrometeorologists attempting to use eddy covariance techniques to directly monitor CO2 fluxes in urban environments, focusing on the inherent variability within and between urban areas, and the importance of scale and the appropriate height of measurements. Results from a very short-term study of CO2 fluxes, undertaken in Chicago, Illinois in the summer of 1995, are presented. Mid-afternoon minimum CO2 concentrations and negative fluxes are attributed to the strength of biospheric photosynthesis and strong mixing of local anthropogenic sources in a deep mixed layer. Poor night-time atmospheric mixing, lower mixed layer depths, biospheric respiration, and continued missions from mobile and fixed anthropogenic sources, account for the night-time maxima in CO2 concentrations. The need for more, longer-term, continuous eddy covariance measurements is stressed.  相似文献   

14.
A field intercomparison experiment of the disjunct eddy covariance (DEC) and the conventional eddy covariance (EC) techniques was conducted over a grass field. The half-hourly water vapor fluxes measured by the DEC were within the estimated uncertainty from the fluxes measured by the EC. On the average there was a slight overestimation (<10%) of the fluxes measured by the DEC during the day and underestimation during the night as compared to the fluxes measured by the EC. As this bias does not appear in the simulated DEC measurements it is likely to be due to instrumental problems. The insensitivity of the quality of the fluxes measured by the DEC method to the deficiencies in the gas analysis shows the robustness of this new approach for measuring the surface-atmosphere exchange of trace gases.  相似文献   

15.
Micrometeorological tower data, collected over grape and cotton canopies as part of the California ozone deposition experiment (CODE) during the summer of 1991, are used to examine the temporal association between fluxes, and the physical characteristics of the coherent structures which dominate transport for both stable nighttime and unstable daytime conditions. Flux was calculated using the eddy covariance technique and the dominant modes of flux transport determined by quadrant analysis. The mean flux densities for both the cotton and grape site showed the surface acting as a sink for CO2 and ozone and a source of heat and H2O during the day, as would be expected, while during the night it became a source for CO2 and a sink for heat, but remained a sink for ozone and a source of H2O. The flux association results indicated a single vegetated ozone sink for the grape site, but a vegetated as well as a non-vegetated sink for the cotton site. For both sites, structures simultaneously transporting significant flux contributions of CO2, H2O, heat and ozone dominate during unstable conditions, but differed during stable conditions, where unmixed single flux structures dominated over cotton but not over grape. Structure sizes were less than 10 m during nighttime conditions and ranged from 3 to 69 m during the day. The results of this study contribute empirical evidence about the relationship between ozone uptake and the physical and physiological state of vegetation, as well as the limitations placed on eddy scales in simulation models.  相似文献   

16.
Micrometeorological methods were applied to measure fluxes of atmospheric ammonia (NH3) to moorlands. Measurements were made in a wide variety of surface conditions and included both Calluna vulgaris (L.) Hull and Eriophorum vaginatum L. dominated sites. NH3 was found to deposit rapidly to all the sites investigated, providing large deposition velocities (Vd, typically 10-40 mm s(-1)) and usually minimal surface resistances (rc). A small number of measurements were made in frozen conditions and suggest a possible exception to this pattern with mean rc of 50-200 s m(-1). The effect of vegetation drying was also investigated and a possible increase in rc observed, though this was small (< 10 s m(-1)). The results are interpreted in terms of the processes controlling exchange; it is shown that NH3 deposition is predominantly to the leaf surfaces and that the net NH3 compensation point approaches zero. Annual estimates show that dry deposition of NH3 is a major source of atmospheric nitrogen to moorland ecosystems. For two typical UK sites subject to background air concentrations, NH3 dry deposition is of similar magnitude to equivalent NH4+ inputs in wet deposition. In the vicinity of emission sources, NH3 dry deposition is expected to dominate inputs of atmospheric nitrogen.  相似文献   

17.
Abstract

Ozone dry deposition fluxes and velocities were measured in 1994 in a semi–arid steppe of central Spain and in a forest in southern France during the period of photochemical activity using the gradient method. Downward fluxes were systematically obtained in both sites, with lower values at nighttime and maximum values during the central period of the day, which showed the important role of stomata in ozone uptake. The range of deposition velocities was –0.005 to 1.160 in the forested site and 0.001 to 1.430 cm s–1 in the semi–arid steppe. The nocturnal deposition velocities observed in the semi–arid steppe were considerably higher than in the forest, with values up to 0.35 cm s–1.

A single layer canopy model was applied and validated at both sites. The model fitted the daily patterns well but underestimated the observed values by 34% in the forest and by 10% in the semi–arid steppe. To improve the accuracy of the model, both soil and internal stomatal resistances, Rsoil and Ri, were estimated using a least square technique. The interdependence of both parameters and the relative humidity, rH, was evaluated through a statistical analysis of the residual between the observed deposition velocity and the aerodynamic, sub–layer, and stomatal resistances. The comparison between the parameter estimates under wet and dry conditions in both sites showed (1) the influence of rH on stomatal parameter and soil resistance, (2) the large contribution of stomatal conductance to ozone uptake during the daytime, and (3) the importance of soil as an additional pathway for ozone exchange, especially in the steppe. Taking into account the parameter estimates, the underestimate of the modeled results was 3% in the forest and 5% in the semi–arid steppe.  相似文献   

18.
Measurements of the dry deposition velocity of O3 to material samples of calcareous stone, concrete and wood at varying humidity of the air, were performed in a deposition chamber. Equilibrium surface deposition velocities were found for various humidity values by fitting a model to the time-dependent deposition data. A deposition velocity-humidity model was derived giving three separate rate constants for the surface deposition velocities, i.e. on the dry surface, on the first mono-layer of adsorbed water and on additional surface water. The variation in the dry air equilibrium surface deposition velocities among the samples correlated with variations in effective areas, with larger effective areas giving higher measured deposition velocities. A minimum for the equilibrium surface deposition velocity was generally measured at an intermediate humidity close to the humidity found to correspond to one mono-layer of water molecules on the surfaces. At low air humidity the equilibrium surface deposition velocity of O3 was found to decrease as more adsorbed water prevented direct contact of the O3 molecules with the surface. This was partly compensated by an increase as more adsorbed water became available for reaction with O3. At high air humidity the equilibrium surface deposition velocity was found to increase as the mass of water on the surface increased. The deposition velocity on bulk de-ionised water at RH=90% was an order of magnitude lower than on the sample surfaces.  相似文献   

19.
Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed.  相似文献   

20.
To investigate the regional background trace element (TE) level in atmospheric deposition (dry and wet), TEs (Fe, Al, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, and Pb) in 52 rainwater samples and 73 total suspended particles (TSP) samples collected in Mt. Lushan, Southern China, were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that TEs in wet and dry deposition of the target area were significantly elevated compared within and outside China and the volume weight mean pH of rainwater was 4.43. The relative contributions of wet and dry depositions of TEs vary significantly among elements. The wet deposition fluxes of V, As, Cr, Se, Zn, and Cd exceeded considerably their dry deposition fluxes while dry deposition dominated the removal of pollution elements such as Mo, Cu, Ni, Mn, and Al. The summed dry deposition flux was four times higher than the summed wet deposition flux. Prediction results based on a simple accumulation model found that the content of seven toxic elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in soils could increase rapidly due to the impact of annual atmospheric deposition, and the increasing amounts of them reached 0.063, 0.012, 0.026, 0.459, 0.076, 0.004, and 0.145 mg kg?1, respectively. In addition, the annual increasing rates ranged from 0.05% (Cr and Ni) to 2.08% (Cd). It was also predicted that atmospheric deposition induced the accumulation of Cr and Cd in surface soils. Cd was the critical element with the greatest potential ecological risk among all the elements in atmospheric deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号