共查询到20条相似文献,搜索用时 0 毫秒
1.
森林凋落物的分解是生态系统养分循环的重要过程,以北京西山地带性植被栎树林(辽东栎:Quercus liaotungensis)为对象,主要研究温带森林植物凋落物分解对模拟氮沉降的响应,为更好地了解氮沉降对温带森林地区凋落物的分解过程提供参考.通过模拟氮沉降,研究不同形态氮(硝态氮、铵态氮和混合态氮)和不同水平氮沉降(对照0 kg·hm^-2·a^-1、低氮处理50 kg·hm^-2·a^-1 和高氮处理150 kg·hm^-2·a^-1)对凋落物分解的影响,在2 年的时间内调查分析了凋落物分解过程中质量损失动态和碳(C)、N 含量及w(C)/w(N)比值的变化.研究结果表明,氮沉降均使凋落物分解速率减缓,且随氮沉降剂量增加,凋落物分解速率相比对照分别减慢了9.88%(硝态氮低氮)、15.02%(硝态氮高氮)、11.46%(铵态氮低氮)、14.62%(铵态氮高氮)、13.04%(混合态氮低氮)和16.20%(混合态氮高氮).且不同氮沉降类型、不同氮沉降水平间差异显著.不同形态、不同水平的氮沉降显著地增加了凋落物N 含量(P=0.061,P=0.087),其中混合态氮沉降对凋落物中N 素含量增加最显著(P=0.044).但在分解过程中,各处理均未对凋落物C 含量产生显著影响.不同水平的氮沉降显著降低了凋落物的w(C)/w(N)比值,而且不同类型不同水平氮沉降对凋落物w(C)/w(N)比值具有显著的交互作用(P=0.011).综上所述,通过对模拟氮沉降后凋落物残留率等的变化分析,得出氮沉降对温带森林凋落物的分解产生了抑制作用. 相似文献
2.
模拟氮沉降对兴安落叶松林凋落物分解的影响 总被引:1,自引:0,他引:1
试验施加NH4NO3、KNO3和NH4Cl3种氮肥,设置对照(N0,0 kg·hm-2·a-1)、低氮(N1,10 kg·hm-2·a-1)、中氮(N2,20kg·hm-2·a-1)、高氮(N3,40 kg·hm-2·a-1)4个施氮水平,通过交互试验,研究模拟N沉降对大兴安岭兴安落叶松(Larix gmelinii)林凋落物分解的影响。结果表明,在兴安落叶松林凋落物分解过程中,叶分解最快,其次是枝,分解最慢的为果,在分解16个月后,枝、叶、果的质量残留率分别为76.68%、47.98%和80.43%,3者异极其显著(p〈0.01)。凋落物叶分解95%所需时间为6.71 a,而枝和果所需时间分别为18.07和18.10 a。在模拟大气氮沉降下凋落物分解过程中,施加KNO3,N2处理下的枝、叶、果的质量残留率极显著低于N3处理(p〈0.01),显著低于N0和N1处理。施加NH4Cl下,N1处理显著低于N0处理(p〈0.05)。在施加NH4NO3下,N1水平处理下的枝、叶、果的分解速率显著增加(p〈0.05),但是随着施氮量的增加,分解速率就会减慢,N3处理下,有着明显的抑制作用(p〈0.05),说明氮沉降对于凋落物分解有着促进作用,但是随着时间和氮沉降量的增加,促进作用延缓甚至是抑制作用。 相似文献
3.
模拟酸雨对南亚热带森林凋落物分解和土壤呼吸的影响 总被引:1,自引:0,他引:1
《生态环境学报》2021,(9)
基于鼎湖山野外模拟酸雨长期实验平台,以原位分解实验探讨凋落物分解和土壤呼吸过程对酸雨胁迫的响应与适应机制。设置3个不同处理水平的模拟酸雨,即CK(pH=4.5的天然湖水)、T1(pH=3.5)和T2(pH=3.0)。选取鼎湖山针阔叶混交林试验地优势树种木荷(Schima superba)和锥(Castanopsis chinensis)叶凋落物,置于PVC分解环中进行原位分解实验,每月测定分解环的土壤呼吸速率。15个月(2019年9月—2021年1月)的实验结果显示,CK、T1和T2处理下的木荷和锥凋落物分解残留率分别为37.94%、40.63%、44.14%和21.92%、40.27%、48.72%;在分解早期(2019年9月—2020年4月),不同酸处理水平间没有表现出显著差异(P0.05),而在分解后期(2020年5月至2021年1月)CK和T2处理间差异显著(P0.05)。对照组(未覆盖凋落物的分解环)和覆盖木荷凋落物组中,模拟酸雨显著降低了年土壤呼吸通量(P0.05),但T1和T2处理间差异不显著(P0.05);覆盖锥凋落物组T2处理下的年土壤呼吸通量显著低于CK处理(P0.05),但CK和T1、T1和T2处理间差异不显著(P0.05)。结果表明,高强度的模拟酸雨(pH=3.0)抑制了木荷和锥叶凋落物的分解,但这种抑制作用只在凋落物分解的后期显现。模拟酸雨抑制了土壤呼吸,凋落物覆盖在一定程度上减缓了这种抑制作用,这种减缓效应与凋落物类型及酸雨强度有关。 相似文献
4.
5.
氮沉降对杉木人工林凋落物叶分解过程中养分释放的影响 总被引:1,自引:0,他引:1
凋落物的养分释放是生态系统养分循环的重要组成部分,是维持森林生态系统养分平衡的关键过程。近几十年来,森林生态系统正受到氮沉降增加的影响,开展氮沉降全球化背景下凋落物养分释放的研究,有助于揭示森林养分循环对氮沉降的响应机制。以亚热带有代表性的杉木(Cunninghamia lanceolata)人工林(福建官庄国有林场1992年造林)为研究对象,自2004年1月开始进行氮沉降模拟试验,设置4个氮沉降处理,分别为0(N0)、60(N60)、120(N120)、240(N240)kg·hm~(-2)·a~(-1),采用分解袋法进行原位分解试验,将分解袋随机投放至林地表面,每隔60天取样1次,共持续660 d,探讨凋落物叶在分解过程中养分(P、K、Ca、Mg、Mn、Zn、Fe)的释放动态。结果表明,在模拟氮沉降初期,氮沉降总体上促进了养分元素的释放,相对于N0处理,氮沉降分别使K的周转期缩短22.14%-26.09%,Ca周转期缩短15.31%-34.59%,Mg的周转期缩短5.25%-27.03%,Mn的周转期缩短17.85%-46.80%,Zn的周转期缩短20.51%-33.18%;就P和Fe而言,仅有N_2处理对其表现为促进作用,周转期分别缩短11.02%和26.01%。在各氮沉降水平中,120 kg·hm~(-2)·a~(-1)的施入量对凋落物养分释放作用最显著,说明此时杉木人工林还未达到氮饱和状态,随着时间的推移,当杉木人工林生态系统达到氮饱合时,则有可能对凋落物的养分释放产生不利的影响。 相似文献
6.
《应用与环境生物学报》2019,(1)
青藏高原高山草地的凋落物分解是其生物地化循环过程的重要一环.采用样方调查法估测两种典型地形条件下高山草地单位面积的年凋落物产量,分析定面积凋落物分解袋中的初始装袋量与凋落物分解率的关系,估算最佳初始凋落物装袋量.通过积雪期设置双面凋落物分解袋于浅雪、深雪、无雪及人工雪被处理下,比较不同的雪被处理下凋落物的分解率,同时测定对应的土壤温度及土壤微生物生物量碳氮含量,进而分析土壤微生物生物量碳氮与凋落物分解率之间的相关关系.研究发现:(1)两种典型样地内植物凋落物在自然状态下的年产生量均约为90 g/m~2;(2)非生长季中凋落物分解率与凋落物初始重量呈负线性相关,凋落物初始装袋量3 g是研究分解率的相对较佳重量;(3)随着积雪厚度的增加,非生长季土壤温度和凋落物分解率提高,同时也促进了土壤微生物生物量的积累,凋落物分解率和土壤微生物生物量碳、氮在深雪与无雪处理下分别达到最大值(分别为10.15%,156.37 mg/kg,75.89 mg/kg)和最小值(分别为3.07%,65.38mg/kg,20.17mg/kg).土壤微生物生物量碳、氮均与凋落物分解率呈显著相关性(P 0.05).综上所述,即便在冬季气温低于冰点的情况下,雪被的隔绝作用使得土壤微生物活动依然活跃进行;雪被变化既改变了土壤环境因子及凋落物分解率,也深刻影响着高山草地生态系统的结构与功能. 相似文献
7.
8.
氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系 总被引:12,自引:0,他引:12
研究了南亚热带3种森林生态系统凋落物在N沉降下的分解动态及其与土壤动物群落的关系。选取季风常绿阔叶林、针阔混交林和马尾松林建立野外模拟N沉降样地,实施四个处理组,对照(Control)、低氮(50kg·hm-2·a-1,LowN)、中氮(100kg·hm-2·a-1,MediujmN)和高氮处理(150kg·hm-2·a-1,HighN),利用凋落物网袋法,在18个月的时间内调查分析了凋落物分解过程及其中的土壤动物密度特征。研究结果表明,植被演替阶段对凋落物的分解速度存在影响,季风林凋落物降解速度显著性快于混交林和针叶林(P<0.05);18个月后,季风林各处理地凋落物残留率为0.05、0.14、0.13和0.17,混交林为0.64、0.56和0.62,针叶林为0.66、0.63和0.62。N沉降增加对凋落物分解存在一定影响。且这种影响与植被类型之间存在明显的交互作用。N沉降处理对季风林凋落物分解表现出了一定的抑制作用,而且这种差异随时间推移愈益明显,但在混交林和针叶林内,试验后期凋落物分解受到了N沉降处理的促进作用。在试验后期,尤其是12个月后,凋落物网袋土壤动物密度在不同林地和不同水平N处理下体现了差异化发展趋势。在季风林内,N处理地土壤动物密度受到了明显的抑制;在混交林和针叶林内,低N样地动物密度显示了相比对照样地的明显优势,但在较高强度的中N处理地无论在凋落物的降解速率还是在动物密度上都与对照样地没有明显差别。文章认为,N沉降处理所产生的影响可能受环境N饱和程度的调控。文章还提出,在凋落物分解进程中,土壤动物群落具有“后期进入”特征,这对于进一步准确分析森林凋落物分解进程及土壤动物的贡献有重要意义。 相似文献
9.
森林凋落物是生态系统生产力的重要组成成分,对生态系统物质循环和养分平衡起着促进作用。近些年来日益增加的氮(N)沉降对生态系统稳定构成一定威胁,因此了解大气N沉降增加背景下凋落物动态变化对于预测森林碳循环对气候变化的响应具有重要意义。以连续施N 7年的兴安落叶松林(Larix gmelinii)为研究对象,观测4年(2014-2017)森林凋落物的生产量,旨在探求森林凋落物年际动态变化驱动因子及其对N沉降的响应。以NH4NO3为外施氮源,设置对照(CK:0g·m~(-2)·a~(-1))、低氮(LN:2.5g·m~(-2)·a-~(1))、中氮(MN:5g·m~(-2)·a-~(1))和高氮(-HN:7.5g·m~(-2)·a-~(1))等4种处理,每个处理包括3个重复(n=3)。结果表明,(1)凋落物总量和兴安落叶松凋落叶量的年际动态变化驱动因子为生长季月平均温度,而枝、果实及其它繁殖器官凋落量与年最大风速显著相关。(2)年际凋落量的大小顺序为:2015(3.15±0.31)t·hm~(-2)·a-~(1)2016(3.10±0.25)t·hm~(-2)·a-~(1)2014(2.83±0.31)t·hm~(-2)·a-~(1)2017(1.48±0.25)t·hm-2·-a1,各组分凋落量所占比例大小顺序均为兴安落叶松叶阔叶枝果实及其他繁殖器官;施N处理对总凋落量和兴安落叶松凋落叶产生抑制作用,且凋落量随N浓度增加而逐渐降低,然而不同施N处理对枝、果及其它繁殖器官凋落量作用不明显。(3)N沉降对兴安落叶松凋落叶中C、N、P含量及C/N影响不同:凋落叶C含量整体年际动态变化不明显,且施N对凋落叶中C含量无影响;凋落叶N和P含量在不同年份呈现不同的变化趋势,总体上施氮增加了凋落叶N含量却降低了P含量;凋落叶C/N在各个年份对N添加响应有所不同,主要表现为施N降低了凋落叶C/N。(4)凋落叶N归还量在年际间随着N浓度不同呈现一定的波动,N沉降降低了凋落叶C和P的年际归还量,且表现出N浓度越高,归还量越低的趋势。 相似文献
10.
11.
为了了解我国南方森林常见的人为干扰(凋落物收取)活动对生态系统养分循环的影响,研究了鼎湖山马尾松林3种主要树种凋落物分解及其养分释放对凋落物输入量变化的响应。这3种树种分别为马尾松(Pinus massoniana)、荷木(Schimasuperba)和锥栗(Castanopsis chinensis)。凋落物输入量变化分别为凋落物去除(L-)、加倍(L+)和对照(L)3种处理,每种处理25个重复。经过18个月的处理试验,凋落物分解速率及其养分释放随树种、分解阶段和凋落物处理不同而异。荷木、马尾松和锥栗分解物平均残留率分别为0.46±0.01、0.42±0.01、0.40±0.02,其中,荷木与锥栗、马尾松差异性显著。不同处理间的凋落物分解速率差异显著,加倍、对照和去除处理样地凋落物的平均残留率分别为0.51±0.08、0.53±0.09和0.55±0.08。凋落物加倍处理促进了凋落物分解过程中C的释放,而去除凋落物处理则抑制了N、P的释放。以上结果表明,凋落物收取活动不仅直接带走凋落物中的大量养分,而且抑制了凋落物分解及其养分释放。 相似文献
12.
大气氮沉降的增加对森林土壤的影响是近来生态学研究的重要课题。以鼎湖山季风常绿阔叶林(以下简称为“阔叶林”)、马尾松(Pinus massoniana)林、针阔叶混交林(以下简称为“混交林”)和增城木荷(Schima superba)人工幼林等4种林型土壤为研究对象,采用野外原位模拟大气氮沉降的方法,设置3种模拟氮沉降量,即N0(对照,N:0 g·m-2·a-1)、N5(N:5 g·m-2·a-1)、N10(N:10 g·m-2·a-1),在模拟氮沉降时间分别为42个月(阔叶林)、31个月(马尾松林)、50个月(混交林)、20个月(人工幼林)后,采集0~20 cm土层的林地土壤,分析土壤的化学性质,探讨不同氮沉降量对不同林型土壤化学性质的影响。结果表明,(1)模拟氮沉降对鼎湖山阔叶林、马尾松林、混交林土壤pH值的影响基本一致,均使pH值下降。其中,当氮沉降量达到N10时,阔叶林土壤pH值降为3.97,与对照相比下降了0.11 pH单位,差异达显著性水平(p〈0.05)。而人工幼林土壤pH值未随着氮沉降量的不同而有明显的变化。(2)模拟氮沉降在近2年至4年的时间内,对阔叶林、混交林、人工幼林的土壤有机质、全氮、全磷、全钾、水解性氮、速效磷、速效钾含量的影响均不明显,马尾松林土壤有机质、全氮、全磷、速效磷、速效钾含量也没有明显变化,但模拟氮沉降导致了马尾松林土壤水解性氮含量明显下降,从95.12 mg·kg-1降至84.39 mg·kg-1,差异达显著性水平(p〈0.05)。(3)模拟氮沉降对鼎湖山阔叶林、马尾松林、混交林等3种林型土壤盐基饱和度、盐基离子Ca2+、Mg2+、K+含量的影响未达显著水平,而对这3种林型土壤交换性Na+含量的影响则较明显且影响趋势基本一致,即氮沉降的增加导致了土壤交换性Na+含量明显下降。在N10处理下,与对照相比,这3种林型的土壤交换性Na+含量分别下降了40.0%、68.4%、50.0%,差异达显著性水平(p〈0.05)。氮沉降对人工幼林土壤盐基离子含量无明显的影响。由此可得出结论:在近2年至4年的时间内,氮沉降的增加能引起鼎湖山3种林型土壤尤其是阔叶林土壤加速酸化,引起交换性Na+明显淋失,以及马尾松林土壤水解性氮含量明显下降;但氮沉降的增加对木荷人工幼林土壤化学性质暂无明显的影响。后者可能与该林型模拟氮沉降时间较短、林龄较轻而处于快速生长期等因素有关。 相似文献
13.
凋落物分解是森林生态系统物质循环和能量流动的核心环节。干扰能够影响凋落物分解速率和养分循环,进而改变森林生态系统的结构、功能及过程。文章通过整理干扰对森林凋落物分解影响的研究成果,从凋落物质与量、微环境及分解者类群等方面阐述了干扰对森林凋落物分解的影响机制,并分析现有研究的不足,为未来合理经营森林,增加适度干扰提供一定的理论依据。现有的研究表明,间伐等干扰会显著减少森林凋落物产量,改变凋落物化学特性并促进凋落物分解;干扰对凋落物分解环境的影响主要表现于对温湿度的调节,间伐能增加林内贯穿雨量,从而对湿度有显著提升作用;干扰对土壤动物的短期负面影响较为显著,而对微生物种类和数量则显著提高,从而有效地促进凋落物的分解,这主要归因于干扰改变了微环境与凋落物底物的质量;干扰通过改变土壤条件进而影响相关微生物分解酶的活性,酶活性越高,分解越迅速。干扰对林分结构、分解环境等影响因素的改变与凋落物分解之间的关系错综复杂,其中的机制与机理仍有待明晰;不同方式及程度干扰对森林恢复过程中凋落物分解模式的研究尚有待加深;建立干扰梯度以研究森林地上部分对地下部分的调控及反馈应受到重视;如何进行合理的森林经营以促进凋落物分解也需进一步研究。 相似文献
14.
土壤不同氮组分对氮素循环和转化过程具有不同程度的调节作用。为了准确评价和理解氮添加和凋落物对土壤氮动态的影响,以亚热带罗浮栲(Castanopsis fabri)天然林和杉木(Cunninghamia lanceolata)人工林土壤为研究对象,在保留凋落物(留凋)和去除凋落物(去凋)情况下,模拟氮沉降试验,采用不同浸提剂(水、K_2SO_4、2.5 mol·L~(-1)和13 mol·L~(-1) H2SO4)逐步浸提土壤氮组分,研究氮添加[对照(CK,0 kg·hm~(-2)·a~(-1))、低氮(LN,75 kg·hm~(-2)·a-1)和高氮(HN,150 kg·hm~(-2)·a-1)]对亚热带红壤浸提组分氮含量的影响。结果表明:硫酸钾浸提的NH_4~+-N和可溶性有机氮(SON)高于水浸提的,而水浸提的NO_3~--N含量高于硫酸钾浸提的,酸水解性氮高于水溶性氮和盐溶性氮。林分显著影响不同组分氮含量,对水溶性氮含量的影响最显著,而阔叶天然林土壤氮组分对氮添加的响应更明显。留凋处理增加水溶性氮,且有利于惰性氮的分解,而去凋处理有利于惰性氮积累。氮添加对酸解性氮组分的影响不显著,氮添加显著降低2种林分土壤的惰性氮指数,降幅为64.7%~82.2%,去凋处理的降幅更大。土壤水溶性、交换性和弱酸浸提的SON与微生物生物量氮呈显著正相关,土壤水溶性和交换性SON可能是参与土壤氮矿化的重要组分。不同浸提组分氮之间呈显著正相关,说明组分之间存在相互影响。可见,从不同氮组分角度研究氮动态,更能反映其内在机理。 相似文献
15.
《应用与环境生物学报》2021,(4)
凋落物分解酶可以催化凋落物分解并且影响其分解速率,在生态系统物质循环和能量流动过程中发挥着重要作用.采用海拔梯度改变而导致增温的方式探究南亚热带针阔叶混交林凋落物层6种分解酶活性对增温的响应特征及其影响因子.结果表明,湿季增温使酸性磷酸酶(AP)和纤维二糖酶(CBH)活性分别降低了36.08%和29.01%,干季增温使AP增加了49.90%,而β葡萄糖苷酶(BG)活性降低了21.07%,乙酰氨基葡萄糖苷酶(NAG)、多酚氧化酶(PPO)和过氧化物酶(POD)没有受到增温的影响.增温对凋落物碳(C)、氮(N)、磷(P)含量和微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)没有显著影响.季节变化显著影响了凋落物N含量、C:N、N:P和MBC(P 0.05),增温和干湿季交互作用显著影响凋落物C:P(P 0.05).冗余分析表明不同季节凋落物MBC和凋落物N:P的变化是影响增温背景下南亚热带针阔叶混交林凋落物分解酶活性的主导因子.综上,在气候变暖的情况下,凋落物分解酶活性的变化可能有助于缓解养分对微生物的限制,形成新的养分利用模式来应对气候变化.(图4表4参43) 相似文献
16.
17.
《应用与环境生物学报》2019,(1)
纤维素是森林凋落叶中含量最多的难分解物质,采用凋落叶分解袋法,以CO(NH_2)_2为氮源、Na_2SO_4为硫源,设置氮、硫双因素三水平共9种处理,即对照(CK)、低氮(LN)、高氮(HN)、低硫(LS)、高硫(HS)、低氮低硫(LNLS)、高氮低硫(HNLS)、低氮高硫(LNHS)和高氮高硫(HNHS),研究氮、硫沉降对华西雨屏区常绿阔叶林凋落叶分解过程中纤维素降解的影响.结果显示,氮、硫沉降各处理的纤维素损失率在沉降第4个月时最大,损失30.7%-43.1%,在第8个月时最小,净累积6.8%-29.3%;LN和LNLS对纤维素酶活性和凋落叶纤维素损失率的影响不显著,LS显著提高了分解过程中凋落叶C/N值、纤维素酶活性和纤维素损失率,HN、HS、HNLS、LNHS和HNHS显著降低了纤维素酶活性和纤维素损失率;模拟氮、硫复合沉降对纤维素降解的交互作用显著.本研究表明,氮、硫沉降相互作用共同影响华西雨屏区常绿阔叶林凋落叶分解过程中纤维素的降解,进而可能影响该区域常绿阔叶林生态系统物质循环和能量流动. 相似文献
18.
模拟氮沉降对苗圃地土壤动物群落的影响 总被引:6,自引:0,他引:6
通过人工喷施氮H4NO3建立了一个模拟氮沉降增加梯度系列,在近18个月的试验处理期间,研究了2003年7月、10月和2004年2月、5月这几个不同季度苗圃试验样地土壤动物群落对氮沉降增加的响应。实验分为5个处理组:对照、低氮、中氮、高氮和倍高氮,分别接受0、5、10、15、30g/(m2·a)的氮沉降量。土壤细菌和真菌的数量总体上随氮处理的加强而持续显著地增长,土壤有机氮含量也持续升高,土壤酸度则不断下降。采样期对土壤动物的个体数量、类群丰度和多样性存在显著的影响,总的来说,土壤动物群落随试验处理期加长而持续增长。土壤动物群落具有显著的垂直分异特征,土壤I层土壤动物个体数量、类群丰度和多样性显著高于II和III层。氮沉降增加对土壤动物群落有明显的影响,表现为施氮处理明显有利于土壤动物群落的发展,但也具有明显的阀值效应。与对照样地相比,各施氮处理样地土壤动物群落水平整体为高,而且随试验处理时间的增加这种差异有加大的趋势;氮沉降增加处理与取样期之间存在显著的交互作用,除了2月取样,中氮处理土壤动物群落水平都处于最高水平,而对照处理一般处于最低水平,这种趋势在最后一次取样中最为明显;氮沉降处理与土壤动物的垂直分布之间也有明显的交互作用:在土壤I层,从对照至倍高氮处理,土壤动物群 相似文献
19.
不同强度间伐对杉木人工林凋落物分解速率的影响 总被引:3,自引:0,他引:3
《生态环境学报》2016,(8)
为了明晰凋落物分解对间伐强度的响应,本文以南京市溧水区林场间伐7年后的25年生杉木Cunninghamia lanceolata(Lamb.)Hook.人工林为研究对象,研究了不同间伐强度下凋落物的分解速率和化学组成的变化,并分析其与部分环境因子之间的关系,以期为不同间伐强度对凋落物分解特征影响机制的初步探究奠定基础,为人工针叶林的可持续发展提供科学依据。结果显示,(1)间伐显著改变了杉木人工林凋落物的分解速率;与对照地相比,中度间伐下分解最快,失重率为31.98%;弱度间伐次之,为30.94%;强度间伐则会减缓杉木凋落物的分解,失重率仅达到27.03%。(2)经1年分解,对照地和3种间伐强度下凋落物均表现出N的净积累,中度间伐强度对凋落物中N的影响显著,w(C)/w(N)和w(木质素)/w(N)的年动态变化趋势相似,其中w(C)/w(N)是反映分解速率的理想指标。(3)间伐主要通过影响凋落物层温度、蔗糖酶和纤维素酶的活性来改变凋落物的分解速率。本研究结果表明,适度间伐能够改变凋落物层温度和酶活性,加速杉木人工林凋落物的分解,减缓过分积累,促进土壤养分的输入;过度间伐会抑制凋落物分解,阻滞养分的回归与利用。该研究对进一步揭示间伐对森林系统中物质及养分循环的影响机制有一定意义,可为制定合理有效的营林措施,促进针叶人工林养分循环提供一定的科学依据。 相似文献
20.
《生态环境学报》2015,(3)
苯系物(BTEX)是一类重要的挥发性有机化合物(VOCs),能参与大气光化学反应,并对人体健康有重要影响。土壤能释放或吸收BTEX,氮沉降会影响土壤生态过程,从而可能影响土壤BTEX通量。有关森林土壤BTEX通量对氮沉降响应的研究十分有限。运用静态箱采样、利用大气预浓缩仪-GC-MS研究了鼎湖山两种典型森林——马尾松林(Pine forest,PF)和季风常绿阔叶林(Monsoon evergreen broadleaf forest,BF)土壤BTEX通量对模拟氮沉降增加的响应。结果表明:自然氮沉降条件下,PF土壤吸收BTEX,乙苯吸收速率最大(-51.52±10.94)pmol·m-2·s-1,低氮抑制了PF土壤对BTEX的吸收,中氮主要使土壤由"汇"变为"源";BF土壤释放BTEX,甲苯释放速率最高(7.11±0.12)pmol·m-2·s-1,施氮降低了BF土壤BTEX释放量或使土壤由"源"变"汇",且低氮和高氮的影响效果更显著。施氮条件下,PF土壤甲苯与乙苯、间/对二甲苯、邻二甲苯通量显著相关,BF土壤苯与甲苯、间/对二甲苯、邻二甲苯显著相关。土壤BTEX通量无明显日变化规律,对照和高氮样地最大释放均出现在7:00,最大吸收出现在19:00(对照样地)和13:00(高氮样地)。自然氮沉降条件下,BF土壤CO2通量(29.46±3.27)mg·m-2·h-1显著高于PF土壤(11.02±0.96)mg·m-2·h-1,两个水平氮处理均促进了两种林型土壤CO2的释放。土壤BTEX通量与土壤温度、大气温度和CO2浓度无显著相关性;邻二甲苯和乙苯通量与土壤湿度呈显著相关。 相似文献