首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.  相似文献   

2.
Colonies of social insects are sometimes viewed as superorganisms. The birth, reproduction, and death of colonies can be studied with demographic measures analogous to those normally applied to individuals, but two additional questions arise. First, how do adaptive colony demographies arise from individual behaviors? Second, since these superorganisms are made up of genetically distinct individuals, do conflicts within the colony sometimes modify and upset optima for colonies? The interplay between individual and superindividual or colony interests appears to be particularly complex in neotropical, swarm-founding, epiponine wasps such as Parachartergus colobopterus. In a long-term study of this species, we censused 286 nests to study colony-level reproduction and survivorship and evaluated individual-level factors by assessing genetic relatedness and queen production. Colony survivorship followed a negative exponential curve very closely, indicating type II survivorship. This pattern is defined by constant mortality across ages and is more characteristic of birds and other vertebrates than of insects. Individual colonies are long-lived, lasting an average of 347 days, with a maximum of over 4.5 years. The low and constant levels of colony mortality arise in part from colony initiation by swarming, nesting on protected substrates, and an unusual expandable nest structure. The ability to requeen rapidly was also important; relatedness data suggest that colonies requeen on average once every 9–12 months. We studied whether colony optima with respect to the timing of reproduction could be upset by individual worker interests. In this species, colonies are normally polygynous but new queens are produced only after a colony reaches the monogynous state, a result which is in accord with the genetic interests of workers. Therefore colony worker interests might drive colonies to reproduce whenever queen number happens to cycled down to one rather than at the season that is otherwise optimal. However, we found reproduction to be heavily concentrated in the rainy season. The number of new colonies peaked in this season as did the percentages of males and queens. Relatedness among workers reached a seasonal low of 0.21–0.27, reflecting the higher numbers of laying queens. This seasonality was achieved in part by a modest degree of synchrony in the queen reduction cycle. Worker relatedness reached peaks of around 0.4 in the dry season, reflecting a decrease to a harmonic mean queen number of about 2.5. Thus, a significant number of colonies must be approaching monogyny entering the rainy season. Coupled with polygynous colonies rearing only males (split sex ratios), this makes it possible for a colony cycle driven by selfish worker interests to be consistent with concentrating colony reproduction during a favorable season.  相似文献   

3.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

4.
Wild bumblebee colonies are hard to find and often inaccessible, so there have been few studies of the genetic structure of bumblebees within natural colonies, and hence, it is not clear how frequently events such as worker reproduction, worker drift and queen usurpation take place. This study aimed to quantify the occurrence of natal-worker reproduction, worker drift and drifter reproduction within 14 wild colonies of Bombus terrestris in Central Scotland. Four unlinked microsatellites were used to identify patterns of relatedness of the colonies’ adults and broods. In colonies with queens (queenright colonies), worker reproduction accounted for just 0.83 % of males, increasing to 12.11 % in queenless colonies. Four colonies contained a total of six workers which were not daughters of the queen, and were assumed to be drifters, and four male offspring of drifters. Drifting is clearly not common and results in few drifter offspring overall, although drifters produced approximately seven times more offspring per capita than workers that remained in their natal colony. Unexpectedly, two colonies contained clusters of sister workers and juvenile offspring that were not sisters to the rest of the adults or brood found in the colonies, demonstrating probable egg dumping by queens. A third colony contained a queen which was not a sister or daughter to the other bees in the colony. Although usurping of bumblebee colonies by queens in early season is well documented, this appears to be the first record of egg dumping, and it remains unclear whether it is being carried out by old queens or newly mated young queens.  相似文献   

5.
A model has been developed which predicts the numbers of immature and adult workers, males and queens, in a Paravespula vulgaris colony throughout a season. This model colony is based on the rate of egg lay of the queen which is approximated by a skewed normal frequency curve. Larval and pupal numbers are predicted by applying mean developmental times to the eggs produced. For workers, adult numbers are produced by modifying pupal numbers by adult longevity, while adult males and queens are obtained directly from their respective pupal numbers. Data generated by the model compare favourably with published observations.Changes in the larva : worker ratio through the season affecting adult longevity and immature stage developmental times are discussed. The total number of adults produced per worker (Ro) varies throughout the season following a skewed normal frequency distribution. Adult queens and males accounted for only 15% of the total seasonal egg production.This model could easily be adapted to deal with population changes in colonies of other eusocial wasps.  相似文献   

6.
Reproductive success within populations often varies with the timing of breeding, typically declining over the season. This variation is usually attributed to seasonal changes in resource availability and/or differences in the quality or experience of breeders. In colonial species, the timing of breeding may be of particular importance because the costs and benefits of colonial breeding are likely to vary over the season and also with colony size. In this study, we examine the relationship between timing of breeding and reproductive performance (clutch size and nest success) both within and between variable sized colonies (n = 18) of fairy martins, Petrochelidon ariel. In four of these colonies, we also experimentally delayed laying in selected nests to disentangle the effects of laying date and individual quality/experience on reproductive success. Within colonies, later laying birds produced smaller clutches, but only in larger colonies. The general seasonal decline in nest success was also more pronounced in larger colonies. Late laying birds were generally smaller than earlier laying birds, but morphological differences were also related to colony size, suggesting optimal colony size also varies with phenotype. Experimentally delayed clutches were larger than concurrently produced non-delayed clutches, but only in larger colonies. Similarly, delayed clutches were more likely to produce fledglings, particularly later in the season and in larger colonies. We suggest that the reduced performance of late breeding pairs in larger colonies resulted primarily from inexperienced/low quality birds preferring to settle in larger colonies, possibly exacerbated by an increase in the costs of coloniality (e.g., resource depletion and ectoparasite infestations) with date and colony size. These findings highlight the importance of phenotype-related differences in settlement decisions and reproductive performance to an improved understanding of colonial breeding and variation in colony size.  相似文献   

7.
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.  相似文献   

8.
Summary In a controlled laboratory experiment, we re-examined the question of bumble bee risk-sensitivity. Harder and Real's (1987) analysis of previous work on bumble bee risk aversion suggests that risk-sensitivity in these organisms is a result of their maximizing the net rate of energy return (calculated as the average of expected per flower rates). Whether bees are risk-sensitive foragers with respect to minimizing the probability of energetic shortfall is therefore still an open question. We examined how the foraging preferences of bumble bees for nectar reward variation were affected by colony energy reserves, which we manipulated by draining or adding sucrose solution to colony honey pots. Nine workers from four confined colonies of Bombus occidentalis foraged for sucrose solution in two patches of artificial flowers. These patches yielded the same expected rate of net energy intake, but floral volumes were variable in one patch and constant in the other. Our results show that bumble bees can be both risk-averse (preferring constant flowers) and risk-prone (preferring variable flowers), depending on the status of their colony energy reserves. Diet choice in bumble bees appears to be sensitive to the target value a colony-level energetic requirement. Offprint requests to: R.V. Cartar  相似文献   

9.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

10.
Many hypotheses attempt to explain why queens of social insects mate multiply. We tested the sex locus hypothesis for the evolution of polyandry in honey bees (Apis mellifera). A queen may produce infertile, diploid males that reduce the viability of worker brood and, presumably, adversely affect colony fitness. Polyandry reduces the variance in diploid male production within a colony and may increase queen fitness if there are non-linear costs associated with brood viability, specifically if the relationship between brood viability and colony fitness is concave. We instrumentally inseminated queens with three of their own brothers to vary brood viability from 50% to 100% among colonies. We measured the colonies during three stages of their development: (1) colony initiation and growth, (2) winter survival, and (3) spring reproduction. We found significant relationships between brood viability and most colony measures during the growth phase of colonies, but the data were too variable to distinguish significant non-linear effects. However, there was a significant step function of brood viability on winter survival, such that all colonies above 72% brood viability survived the winter but only 37.5% of the colonies below 72% viability survived. We discuss the significance of this and other "genetic diversity" hypotheses for the evolution of polyandry.  相似文献   

11.
Queen and worker Bombus terrestris have different optima for the timing of gyne production. Workers, being more related to their gyne-sisters than to their sons, should ascertain that gyne production has started before attempting to reproduce. Their optimal timing for gyne production will be as early as possible, while allowing sufficient ergonomic colony growth to support gyne rearing. Queen optimum, on the other hand, should be to postpone gyne production toward the end of colony life cycle, in order to minimize the time-window available for worker reproduction. Thus, the timing of gyne production may profoundly affect the outcome of queen–worker competition over male production. In this study we investigated some of the social correlates possibly affecting this timing. It was found that neither keeping colony size constant and as low as 20 workers, nor decreasing worker average age, influenced the onset of gyne production. To test the effect of queen age we created young colonies with old queens and vice versa. When colony social composition remained unchanged, in young colonies headed by old queens gynes were produced earlier than predicted, but in the inverse situation gyne production was not delayed. When colony social composition was completely standardized queen age had a decisive effect, indicating that the timing of gyne production is both under queen influence and affected by queen age. Furthermore, queens assess colony age from the time of first worker emergence rather than from their own first oviposition. In these experiments the factors affecting gyne production also affected the onset of queen–worker conflict for male production, suggesting that both are regulated by the same causal effect. Postponing gyne production as much as possible provides another mechanism, in addition to extensive oophagy, for the queen to outcompete her workers in male production.  相似文献   

12.
Summary The queen's role in colony activity integration in small post-emergence colonies of Polistes fuscatus was investigated in the field. We continuously recorded the behaviors of all wasps in (1) undisturbed colonies, (2) colonies from which the queen had been removed, (3) colonies from which a single worker had been removed, (4) colonies with a cooled, relatively inactive queen, and (5) colonies with a cooled, relatively inactive worker (29 colonies; 148 h observation).The queen spends more time on the nest, spends more of its nest time active, participates in more interactions/h, and initiates more interactions/h than does the average worker. Overall, the queen is involved in more interactions than is any other colony member. Queen removal depresses worker activity level and causes episodes of worker activity to become less temporally coupled (less synchronized).The presence of a cooled, inactive queen on the nest produces an even greater reduction in worker activity level and also results in decreased synchrony in worker activity episodes. Removal or cooling of a single worker produces no systematic changes in the activities of the other colony members. We conclude that the P. fuscatus queen is a central pacemaker and coordinator of colony activity.  相似文献   

13.
Summary In a population of the monogynous slave-making ant Harpagoxenus sublaevis in S.E. Sweden, the mean proportion of dry weight investment in queens was 0.54. This result differed significantly from 0.75 but not from 0.5, matching the prediction from the genetic relatedness hypothesis of sex ratio applied to slave-makers, given (as confirmed by this study) single mating of queens, population-wide mate competition, and relatively low levels of worker male production. Sex investment appeared unaffected by resource availability. In the same 47 colony population sample, fertile slave-maker workers were found in every queenless colony (ca. 30% of all colonies), and in 58% of queen-right colonies. Fertile workers occurred at a significantly higher frequency in the queenless colonies (19.2%) than in the queenright ones (9.8%), confirming that queenless conditions promote worker fertility. Fertile and sterile workers were similar in size. Electrophoretic allozyme analysis of ants from 49 colonies showed that: 1) queens mated singly; 2) female nestmates were full sisters (their regression coefficient of relatedness (±SE) was 0.735±0.044); 3) inbreeding did not occur; 4) queen and worker siblings were not genetically differentiated. Worker male production in queenright colonies was neither confirmed nor ruled out by the genetic data. However, production data indicated that queenless workers produced between 4.4 and 21.6% of all males. Overall colony productivity was largely determined by slave number, itself positively correlated with the number of slave-maker workers. There was an abrupt switch from all worker to all sexual production as colony size rose, as predicted by life history models. In queenright colonies, fertile slave-makers did not discernibly reduce colony productivity. Such workers occurred in queenright colonies with most slaves, suggesting they exploited energetic surpluses. Worker reproduction in H. sublaevis therefore appears to have greater influence at the level of individual behaviour than at colony or population level.  相似文献   

14.
We investigated sex allocation in a central European population of the facultatively polygynous ant Leptothorax acervorum. The population-wide sex ratio was found to be quite balanced, with a proportional investment in female sexuals of 0.49. Sex allocation varied considerably between colonies, resulting in split sex ratios. The productivity of colonies was negatively correlated with queen number and positively with colony size. In contrast, the sex ratio (proportional investment in female sexuals) was neither correlated with queen number, colony size, nor total sexual production, but with worker relatedness. The uncoupling of the genetic colony structure and queen number presumably results from frequent queen turnover and colony splitting.  相似文献   

15.
We conducted experiments designed to examine the distribution of foraging honey bees (Apis mellifera) in suburban environments with rich floras and to compare spatial patterns of foraging sites used by colonies located in the same environment. The patterns we observed in resource visitation suggest a reduced role of the recruitment system as part of the overall colony foraging strategy in habitats with abundant, small patches of flowers. We simultaneously sampled recruitment dances of bees inside observation hives in two colonies over 4 days in Miami, Florida (1989) and from two other colonies over five days in Riverside, California (1991). Information encoded in the dance was used to determine the distance and direction that bees flew from the hive for pollen and nectar and to construct foraging maps for each colony. The foraging maps showed that bees from the two colonies in each location usually foraged at different sites, but occasionally they visited the same patches of flowers. Each colony shifted foraging effort among sites on different days. In both locations, the mean flight distances differed between colonies and among days within colonies. The flight distances observed in our study are generally shorter than those reported in a similar study conducted in a temperate deciduous forest where resources were less dense and floral patches were smaller.  相似文献   

16.
Abstract: Factors that contribute to the successful establishment of invasive species are often poorly understood. Propagule size is considered a key determinant of establishment success, but experimental tests of its importance are rare. We used experimental colonies of the invasive Argentine ant (   Linepithema humile ) that differed both in worker and queen number to test how these attributes influence the survivorship and growth of incipient colonies. All propagules without workers experienced queen mortality, in contrast to only 6% of propagules with workers. In small propagules (10–1,000 workers), brood production increased with worker number but not queen number. In contrast, per capita measures of colony growth decreased with worker number over these colony sizes. In larger propagules ( 1,000–11,000 workers), brood production also increased with increasing worker number, but per capita brood production appeared independent of colony size. Our results suggest that queens need workers to establish successfully but that propagules with as few as 10 workers can grow quickly. Given the requirements for propagule success in Argentine ants, it is not surprising how easily they spread via human commerce.  相似文献   

17.
Intraspecific competition is a pervasive phenomenon with important ecological and evolutionary consequences, yet its effect in natural populations remains controversial. Although numerous studies suggest that in many cases populations across all organisms are limited by density-dependent processes, this conclusion often relies on correlative data. Here, using an experimental approach, we examined the effect of intraspecific competition on population regulation of the ant Aphaenogaster senilis. In this species females are philopatric while males disperse by flying over relatively long distances. All colonies were removed from 15 experimental plots, except for one focal colony in each plot, while 15 other plots remained unmanipulated. After the first reproductive season, nest density in the experimental plots returned to a level nonsignificantly different from that in the control plots, which was not expected if the populations were indeed regulated by density-independent phenomena. In both the control plots and the experimental plots colonies remained overdispersed throughout the experiment, suggesting colony mutual exclusion. Nests outside the plots rapidly extended their foraging span, but we did not detect any significant inward migration into the experimental plots. Experimental reduction in density did not significantly affect the focal colonies' biomass, measured just before the first reproductive season. However, the ratio of males to workers-pupae biomasses was smaller in experimental plots, suggesting that colonies there had redirected part of the resources normally allocated to male production to the production instead of new workers. Microsatellite analysis indicated that, after the reproductive season, many colonies in the experimental plots were headed by a young queen that was the mother of the brood but not of the old workers, indicating that reduction in colony density stimulated fission of the remaining colonies. Finally, at the end of the experiment, 14 months after experimental reduction in density, colonies that derived from fission were smaller in the experimental than in the control plots, suggesting that the former had undergone fission at a smaller size than in control plots, which presumably allowed them to colonize the emptied areas. We conclude that colonies adjust resource allocation and colony fission to the degree of intraspecific competition.  相似文献   

18.
Limitation of a necessary resource can affect an organism’s investment into growth and reproduction. Pogonomyrmex harvester ants store vast quantities of seeds in their nests that are thought to buffer the ants when external resources are not available. This research uses externally controlled food availability to examine how resource shortage affects colony investment, resource use, and resource distribution within the nest. Colonies were either starved or supplemented with resources for 2 months, beginning at the onset of reproductive investment and ending immediately before nuptial flights. Fed colonies invested more in overall production, proportionally more in reproduction relative to growth and in female reproductives relative to males. Stored seeds in starved colonies did not buffer production in this study. However, worker fat reserves were depleted in starved colonies, indicating that fat reserves fuel the spring bout of production. In starved colonies, worker fat reserves were depleted evenly throughout the nest, distributing the burden of starvation on all workers regardless of caste and age. A reallocation of diploid eggs into female workers rather than reproductives best explains the observed change in sex ratio investment between treatments. The redistribution of resources into growth relative to reproduction in starved colonies is consistent with life history theory for long-lived organisms, switching from current to future reproduction when resources are scarce.  相似文献   

19.
In many social insects, including bumblebees, the division of labor between workers relates to body size, but little is known about the factors influencing larval development and final size. We confirmed and extend the evidence that in the bumblebee Bombus terrestris the adult bee body size is positively correlated with colony age. We next performed cross-fostering experiments in which eggs were switched between incipient (before worker emergence) and later stage colonies with workers. The introduced eggs developed into adults similar in size to their unrelated nestmates and not to their same-age full sisters developing in their mother colony. Detailed observations revealed that brood tending by the queen decreases, but does not cease, in young colonies with workers. We next showed that both worker number and the queen presence influenced the final size of the developing brood, but only the queen influence was mediated by shortening developmental time. In colonies separated by a queen excluder, brood developmental time was shorter in the queenright compartment. These findings suggest that differences in body size are regulated by the brood interactions with the queen and workers, and not by factors inside the eggs that could vary along with colony development. Finally, we developed a model showing that the typical increase in worker number and the decrease in brood contact with the queen can account for the typical increase in body size. Similar self-organized social regulation of brood development may contribute to the optimization of growth and reproduction in additional social insects.  相似文献   

20.
Division of reproductive labor in insect societies is often based on worker self-restraint and both queen and worker policing. Workers of many hitherto studied wasps, bees and ants do not lay eggs in the presence of a queen. However, it is presently unclear how far these observations in a few select clades can be generalized. We investigated if and how queens maintain a reproductive monopoly in colonies of the elongate twig ant, Pseudomyrmex gracilis, a member of the previously unstudied ant subfamily Pseudomyrmecinae. Colonies are usually headed by a single, singly mated queen (monogyny, monandry). Workers therefore would be more closely related to males produced by other workers (r?=?0.375) than to the sons of queens (r?=?0.25). Nevertheless, workers appear to refrain from laying male-destined eggs in the presence of the queen. In queenless conditions, workers form dominance hierarchies by antennal boxing, and only one or a few high-ranking individuals readily begin to lay eggs. When returned into a queenright colony, egg-laying workers are immediately bitten, stung and expelled or killed by other workers. While the composition of cuticular hydrocarbons clearly differed between castes, it less clearly reflected worker ovarian development. An association with worker ovarian development that would allow workers to monitor the reproductive status of nestmates could only be tentatively postulated for certain substances. Our study broadens our knowledge about reproductive conflict in social Hymenoptera and shows that worker sterility in the presence of a queen is more common in monogynous, monandrous ants than expected from relatedness alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号