首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Radiotracer experiments were designed to study the effect of certain factors on the accumulation and loss of methyl and inorganic mercury in mussels (Mytilus galloprovincialis) and benthic shrimp (Lysmata seticaudata). Methyl mercury was accumulated from both food and water to a greater degree than inorganic mercury by both species. There was a tendency for small mussels to concentrate more mercury than larger individuals, but the reason for this difference remains unclear. A trend towards greater mercury accumulation at higher temperatures was noted for mussels, but the temperature effect was relatively small over a 10 Co range between 8° and 19°C. Methyl mercury residues were eliminated by both species more slowly than those of the inorganic form. Loss from mussels was somewhat more rapid at higher temperatures; however, as in the case of accumulation, the effect of temperature was relatively small. Loss rates for small mussels were not significantly different from those for large individuals. Enhanced methyl mercury elimination was noted for the group of mussels maintained in their natural environment. The more rapid metal turnover in these individuals compared with mussels held in the laboratory was attributed to differences in the availability of natural particulate food matter and, hence, subsequent growth of the animals in the two experimental systems. The observed differences underscore the need for caution in predicting in situ flux of metals such as mercury in certain species based solely on data derived from laboratory experiments.  相似文献   

2.
Microprofiles of oxygen in epiphyte communities on submerged macrophytes   总被引:3,自引:0,他引:3  
Mussels (Mytilus edulis) transferred in net bags from clean to chronically mercury polluted water readily accumulated mercury during an exposure period of three months. Growth of the transplanted mussels had a diluting effect on the mercury concentration, but the absolute weight of mercury uptake increased throughout the entire period, though there was a tendency for decreased efficiency of the removal of mercury per liter of water filtered by the mussels. Mussels were also translocated from polluted to clean (laboratory) water to depurate mercury. The biological half-lives of mercury was 293 d for M. edulis from the chronically polluted area in contrast to only 53 d for mussels from a temporary massive mercury polluted area near a chemical deposit. In both cases about 75% of the total mercury in the mussels was inorganic, and it is suggested that both inorganic and organic mercury species were immobilized in mussels from the long-term mercury polluted area, whereas the immobilization capacity was exceeded in the short-term mercury exposed mussels near the chemical deposit. Very slow elimination of mercury was observed in the deposit-feeding bivalve Macoma balthica from the chronically polluted area, and about 6% of the total mercury was methyl-+phenyl-mercury. This is more than three times lower than found in M. edulis from the same collecting site. A pronounced difference in the mercury speciation (i.e., total mercury, total organic mercury, methyl-mercury and phenyl-mercury) in M. edulis from the two mercury polluted areas is thought to reflect the different character of the mercury pollution in the two areas.  相似文献   

3.
O. Gotsis 《Marine Biology》1982,71(3):217-222
The type of interaction of selenium and mercury, and selenium and copper on the cell growth of the planktonic alga Dunaliella minuta Lerche has been studied. The results for the various selenium/mercury and selenium/copper ratios showed that: (a) although mercury and selenium inhibited the growth of D. minuta when added to its cultures separately at levels greater than their respective threshold concentrations, they had antagonistic effects towards each other when added simulataneously at the beginning of growth; prior exposure of the culture to either metal for 2 d did not alter this antagonistic action; (b) similar antagonism was observed in combinations of selenium and copper for cultures with and without prior exposure to either metal. The reasons for the Se/Hg and Se/Cu antagonism are unknown; several hypotheses concerning possible detoxification mechanisms are proposed.  相似文献   

4.
Studies conducted on the distribution, fate and metabolism of DDT in a model ecosystem simulating a tropical marine environment of fish, Gobious nudiceps, Lethrinus harak, Gobious keinesis, Gobious nebulosis and white shrimp (Panaeus setiferus), show that DDT concentration in the water decreases rapidly within the first 24?h. Rapid accumulation of the pesticide in the biota also reaches a maximum level in 24?h before gradually declining. The bioaccumulation factors calculated for the fish species (G. keinesis) and white shrimp (P. Setiferus) were 270 and 351, respectively, after 24?h. There was a steady build up of DDT residues in the sediment during the first 24?h which continued to a maximum concentration of 6.66?ng/g in the seawater/fish/sediment ecosystem after 3 weeks and 5.27?ng/g in the seawater/shrimps/sediment ecosystem after 2.7 days. The depuration of the accumulated pesticide was slow with only 54% lost in G. nudiceps within 3 days of exposure in fresh sea water. By contrast, depuration was fast in the white shrimp, which lost 97% of the accumulated pesticide under the same conditions. DDT was found to be toxic to two of the fish species (G. nebulosis and L. harak) and to white shrimp, and the degree of toxicity was dependent on the particular species. The 24?h LC50 at room temperature for the fish species G. nebulosis and white shrimp was found to be 0.011 and 0.116?mg/kg, respectively. These levels are comparable to the ones recorded for the temperate organisms. Degradation of DDT to its primary metabolites, DDE and DDD, was found in all the compartments of the ecosystem with DDE being the major metabolite in the fish, shrimps and sediment, while in seawater, DDD dominated as the major metabolite.  相似文献   

5.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

6.
Radiotracer experiments were designed to study the effects of certain environmental and biological factors on arsenic accumulation and elimination processes in the Mediterranean mussel Mytilus galloprovincialis. Arsenic (as arsenate) uptake increased with increasing arsenic concentration in the water; however, the response was not proportional, indicating that accumulation was partially suppressed at higher external arsenic concentrations. In general, approximately 80% of the 74As taken up was associated with the soft parts, with small mussels concentrating 74As to a greater degree than larger individuals. The highest 74As concentrations were recorded in the byssus and the digestive gland. Increased temperature enhanced both arsenic uptake and loss. Mussels in sea water at 19 S accumulated approximately three times more 74As than those held at 38 S. Arsenic loss was much less affected by salinity, with only a tendency for greater arsenic retention noted at lower salinities. Studies carried out in the laboratory and in situ revealed that arsenic turnover was significantly more rapid in actively growing individuals living under natural conditions. Arsenic-74 loss from the in situ group was essentially biphasic, with biological half-times of approximately 3 and 32 days for the fast and slow compartments, respectively. The active secretion of arsenic in the byssal threads contributed to the total elimination of the element from the mussels.  相似文献   

7.
汞、硒暴露对紫贻贝(Mytilus edulis)抗氧化酶系统的影响   总被引:1,自引:0,他引:1  
为了研究重金属汞及微量元素硒对海洋贝类的毒性效应,揭示汞、硒在生物体内的相互作用机制,用汞和硒对指示生物紫贻贝(Mytilus edulis)进行单一及联合亚慢性暴露实验。设置对照组(0μg·L-1)、汞暴露组(25μg·L-1Hg2+)、硒暴露组(4μg·L-1Se4+)以及硒汞联合暴露组(25μg·L-1Hg2++4μg·L-1Se4+)4个实验组,并分别在暴露期间的第0、2、4和6天定时采集样本,测定紫贻贝鳃SOD、GPx及CAT3种抗氧化酶活性。将实验数据进行ANOVA分析处理后,结果表明:与对照组相比,汞暴露组SOD和GPx均呈现先显著升高(p<0.05或p<0.01)后降低(p<0.01或p<0.001)的趋势,CAT则从第4天开始显著降低(p<0.05);硒暴露组中SOD活性始终高于对照组(p<0.001),GPx活性在第2天也显著升高(p<0.001),CAT活性始终与对照组相近;硒汞联合作用与汞暴露组相比,SOD、GPx和CAT活性在不同时间点均有显著升高(p<0.05),而与硒暴露组相比,3种酶活性均低于硒单独暴露的水平。说明汞在短期能够诱导抗氧化酶活性,随着暴露时间的延长,则表现出明显的抑制作用;微量硒能够增强抗氧化酶系统活性,对汞导致的氧化损伤具有拮抗作用。  相似文献   

8.
Mussels have been widely used as bioindicators of coastal contamination, and recent reports have demonstrated that metals are accumulated from both the dissolved phase and from ingested food. In the winter and spring of 1995, we examined the influence of the chemical composition of food (protein content, trace element concentrations and ratios in the diatom Thalassiosira pseudomana) on the assimilation of six trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis (L.). Differences of up to 38% in diatom protein content had no major influence on the assimilation of any trace element or carbon. Protein assimilation in M. edulis examined with a 35S radiotracer was also independent of protein content in the diatoms. Similarly, Se assimilation in mussels was not affected by the different Se concentrations in the diatoms. Cd assimilation increased with increasing Cd concentration, presumably due to higher desorption of Cd under acidic conditions typical of the mussel gut. Zn assimilation was inversely related to Zn concentration in the food particles, implying a partial regulation of this metal in the mussels. There was no evidence of any interaction of Cd and Zn in their assimilation by the mussels. These results suggest that mussels are highly responsive, in an element-specific way, to some components of ingested food (e.g., metal concentration), but other food components (such as the biochemical composition of the algae) have little effect on assimilation.  相似文献   

9.
The crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta were exposed for 40 d to uranium (1.5 to 10 mg l-1) in continuous-flow sea water in separate starved and fed treatments, and the kinetics of uranium bioaccumulation were estimated from an exponential model. Starved and fed crabs took up U at a similar rate, which suggests that sea water was the major source of U to the crab; the fed crabs excreted U more rapidly than the starved crabs and this led to a lower net uptake of U by fed crabs. Fed and starved winkles took up U at similar rates and excreted it at similar rates, so the sea water was also the major source of U to winkles. Crabs took up more U than winkles; the concentration factors were 7 to 18 and 4, respectively. Uranium turnover was quite slow for both species (11 to 36 d) as it was also for winkle shells (6 d); this suggests that the rate-limiting processes which control turnover are biological (e.g. growth or tissue replacement) or physical (e.g. diffusion into the shell) rather than chemical (e.g. precipitation, adsorption or exchange). There was no effect of increasing U concentration in water on the U kinetic parameters.  相似文献   

10.
Common mussels, Mytilus edulis (shell length 19 to 21 mm, average dry weight 30 mg) were maintained for 6 weeks in sea water containing different concentrations of lead (0.005 to 5 mg · l-1). The lead concentration in the mussels' whole soft parts was analysed at different times during the experiment. A constant rate of lead uptake, linearly dependent on the lead concentration of the medium, was observed. Thus, the temporal change of the concentration factor is also linear (regression coefficient 149.9 daily). Rate of lead loss, measured after transferring the mussels into natural sea water, is linearly dependent on the original lead concentration in the soft parts. Rates of uptake and loss in large mussels (shell length 45 to 55 mm, average dry weight 750 mg) are less than those in small mussels (shell length 19 to 21 mm, average dry weight 30 mg). During a much more extended experimental period, adjustment to a steady state is expected to occur; rates of lead uptake and loss are then non-linear. Lead uptake by individual organs (kidney, gills, adductor muscle, digestive gland, foot, mantle with gonads) of large M. edulis (shell length 45 to 55 mm, average dry weight 750 mg) was analysed in 2 test series. In the test series medium, the mussels were kept in a seawater medium containing 0.01 mg. Pb.l-1. In the test series food, the mussels were kept in natural sea water but fed with the green algae Dunaliella marina containing lead (approximately 600 g.g-1 dry weight). The lead quantity given per mussel per day was about 2 g in both test series. Within 35 days, the mussels of test series medium took up 29% of the total amount of lead given, those of test series food took up 23.5%. In all organs, lead concentration increased, but rates of uptake differed; the kidney displayed by far the highest rate of uptake. With these physiological properties M. edulis is an ideal indicator organism for lead pollution in the marine environment. A biologic calibration curve, the relationship between lead concentration in the mussels' whole soft parts at equilibrium and lead concentration in sea water, is presented.This paper forms part of a doctoral thesis in biology at Hamburg University  相似文献   

11.
杨健  曲疆奇  刘洪波 《生态环境》2010,19(3):570-575
作为建立渔业生态环境“淡水贝类观察”体系的基础研究之一,以宜兴养殖水域(N=7)和太湖三山岛自然水域(N=7)采集的背角无齿蚌(Anodonta woodiana)为对象,运用电感耦合等离子质谱仪测定了背角无齿蚌软组织中元素Na、K、Ca、Mg、Mn、Fe、Co、Ni、Se、Cu、Cr、Cd的质量分数范围,并对各种元素积累水平的差异进行比较研究。结果表明,两水域中背角无齿蚌对元素的积累高低顺序具有相似的趋势。其中Ca质量分数最高,Co、Cr的质量分数最低,其它元素界于其间。养殖蚌样中的常量元素Na、K、Ca、Mg和微量元素Mn、Co的积累质量分数高于或接近自然水域蚌样中的相应元素,但后者中的重金属元素Cr、Cu、Cd、Ni质量分数显著地高于前者。养殖水域蚌样中的Mg-K、Mg-Ca、Mg-Ni、Mg-Mn、K-Ca、K—Co、K.Mn、Ca—Co、Ca—Ni、Ca.Mn、Ni—Mn、Cr-Co、Cu-Cd以及自然水域蚌样中的Mg—K、Ca-Cr、Ca—Mn、Ca-Ni、Ca-Cd、Cr—Mn、Cr-Ni、Cr-Cd质量分数之间呈现显著的相关性。  相似文献   

12.
A regulation of internal levels of some essential metals has been observed in various animals, whereas the bioaccumulation of several non-essential metals parallels their overloads in water. In the mussel Mytilus edulis L., we have attempted to determine if such a phenomenon exists by comparing the patterns of accumulation of copper and zinc vs cadmium. With this aim, mussels collected in the Bay of Bourgneuf (France) in November 1983 were exposed to these metals for 16 d. At external levels of zinc as high as 100 gl-1, mussels were able to maintain a normal concentration in all groups of organs for 4 d. The ability of mussels to limit the bioaccumulation of copper and zinc varied from organ to organ, and decreased with higher levels of contamination and longer periods of exposure. In contrast, at the lowest experimental concentration and the lowest period of exposure, a significant increase of cadmium in mussel tissues was generally observed. Even at the highest sub-lethal doses, the levels of copper and zinc in mussel tissues were not much higher than the natural levels (contaminated:background ratios= 2.3 to 6.1), whereas the bioaccumulation of cadmium was less well restricted (contaminated:background ratios=136 to 192). The use of mussels as a bioindicator of pollution seems doubtful for essential metals, particularly as regards short-term pollution, since the levels of these trace elements in the organisms are largely independent of their concentration in the ambient seawater.  相似文献   

13.
In this study, potassium iodide (KI) was found to be capable of reducing selenium(VI) to selenium(IV). When KI was added to Se(VI) solution, the Se(VI) concentration rapidly decreased with an increase in the KI/Se(VI) molar ratio. By using the potential-pH equilibrium diagram for the selenium/water system, we confirmed that Se(VI) reduced to Se(IV) because the potential of the solution shifted to the stable Se(IV) region upon the addition of KI. This reduction accompanies the oxidation of I to I3. The reduction of Se(VI) by KI was found to be effective for concentrated Se(VI) solutions.  相似文献   

14.
In this study, we determined mercury and selenium levels in abandoned unhatched eggs of the yellow-legged gull (Larus michahellis) and Audouin’s gull (Larus audouinii) collected during 2004–2005 from the Tuscan archipelago and Sardinia (Italy). The different feeding habits of the two species probably determine the different uptakes of trace elements, as the study shows highly significant differences for selenium and mercury levels as well as shell thickness and Hg:Se molar ratio values. Audouin’s gulls nesting on the coasts of the Tuscan archipelago showed significantly higher selenium levels than did gulls from colonies from the islands around Sardinia. Comparisons with a similar investigation previously conducted in the same area suggested that mercury and selenium concentrations, although in line with reports in the literature, were significantly lower than levels encountered in gulls in the early 1980s. Mercury (mg/kg d.w.) dropped from 8.631 to 5.030 in Audouin’s gulls and from 2.509 to 0.828 in yellow-legged gulls. The regional decline in mercury levels following reduced use of the metal in industry and the probable food depletion effects linked to the overfishing of fish prey of these two gull species are discussed as hypotheses that could explain the decrease in mercury levels found in eggs.  相似文献   

15.
Participatory turnover time is defined as the time required to cycle an element in a system through a given material in that system. The participatory turnover time of ionic zinc by the adult Meganyctiphanes norvegica population in the Ligurian Sea ranged between 498 and 1243 years, depending upon the available food supply, and considering the food chain as the only route for zinc accumulation by the population. A total-impact turnover time was calculated as the sum of the participatory turnover time for live individuals plus the time required for dead euphausiids to lose 90% of their zinc to the water. Carcasses lost zinc to the water slower than either feces or molts, and so established the maximum loss time for all particulate excretion products; nevertheless, total-impact turnover time for zinc did not differ significantly from the participatory turnover time. The net vertical transport of zinc by M. norvegica from the sea surface to any specified depth can be calculated as the sum of the dissolved zinc excreted below the depth plus the concentrations of zinc left in feces, molts, and carcasses after they have sunk to the specified depth. Carcasses sink the fastest and lose the smallest fraction of their zinc concentration during descent; fecal pellets sink the slowest and lose the greatest fraction of their zinc concentration, and molts are intermediate. Nevertheless, feces represents the major route for delivering zinc to the bottom of the Ligurian Sea (2500 m), because concentration of the element in the pellets is so much higher than in carcasses or molts. Excretion of dissolved zinc into the water at the vertical migration depth of the living population during daylight hours was also inconsequential. Feces zinc represented over 80% of the total zinc transported to the sea floor if only marginal food supplies were available to the euphausiids, and over 90% if food was in sufficient supply. M. norvegica can effect a net transport of about 98% of its body zinc concentration below 500 m daily, in conditions of sufficient food supply and assuming that no released products are eaten during descent. If the food supply in the Ligurian Sea is considered only marginal throughout the year, M. norvegica can still effect a daily net transport below 500 m of about 36% of its body concentration, and about 6% of its body concentration will reach 2500 m daily.  相似文献   

16.
The results of toxicity experiments have shown that a level of 17 ppb ionic mercury is acutely toxic (96-h LC50) to postlarval white shrimp (Penaeus setiferus). In addition, the size of the shrimp, within the range tested (7 to 35 mm) did not significantly alter the toxicity values of mercury to this species. Fifty-seven days pre-exposure to low levels of mercury (0.5 and 1.0 ppb) had no effect on the acute toxicity (96-h LC50) of mercury to the shrimp. The effect of chronic exposure to low levels of mercury on the respiratory rate, growth, and molting rate of postlarval P. setiferus was studied, and the results showed that 60 days exposure to 0.5 and 1.0 ppb mercury did not significantly affect any of these parameters for the postlarvae.  相似文献   

17.
The uptake of a polychlorinated biphenyl preparation containing 5 to 7 chlorine atoms/molecule, solubilized in a nonionic surfactant in sea water, by Gammarus oceanicus was measured spectrophotometrically. Uptake occurred in living animals across the general integument. It is suggested that uptake rates are dependent upon the total surface area of the integument, although no accurate method of determining this is known. The rate of uptake decreased after 4 to 6 hours exposure and uptake was dependent upon concentration of polychlorinated biphenyls in sea water. The stage of the intermoult of G. oceanicus did not affect uptake rates.  相似文献   

18.
Radiotracers were used to study processes controlling the accumulation and elimination of vanadium in the Mediterranean mussel Mytilus galloprovincialis. Vanadium uptake rates varied inversely with both salinity and vanadium concentration in water, but were independent of temperature. After a 3 wk exposure to 48V, the highest concentration factors were found in the byssus (1900) with much lower values computed for shell ( 70) and soft tissues (5). More than 90% of the total 48V accumulated was fixed to shell, suggesting that uptake is primarily a result of surface sorption processes. Much of the vanadium in shell was firmly bound to the periostracum and was not easily removed by acid leaching. Food-chain experiments indicated that the assimilation coefficient for ingested vanadium is low (7%) and that the assimilated fraction is rapidly excreted from the mussel. These findings coupled with knowledge of in situ and experimentally-derived vanadium concentration-factors have allowed a preliminary assessment of the relative importance of the food and water pathways in the contamination of mussels under conditions of acute and chronic exposure. Contaminated mussels transferred to clean sea water lost 48V at rates that depended upon temperature but were largely unaffected by either salinity or by vanadium levels in mussel tissues. Total vanadium depuration was slow and was governed by loss from a slowly-exchanging compartment with a characteristic half-time of about 100 d. Individual mussel tissues were analyzed for stable vanadium and the possibility of using these tissues, particularly the byssus, as bioindicators of ambient vanadium levels in the marine environment is also discussed.  相似文献   

19.
The burrowing marine shrimp Callianassa australiensis (Dana) was collected from an uncontaminated area in Western Port, Victoria, Australia in 1977. The shrimp were exposed to cadmium-contaminated water and sediment for 8 wk. The concentrations ranged from 0.5 to 63 g Cd 1-1 for water and 0.5 to 63 g Cd g-1 for sediment. The shrimp accumulated cadmium from water at a rate commensurate with increases in the concentration of cadmium in water and the duration of the experiment. Although the cadmium concentration in the sediments was 103 times higher than that in water, it hat no effect on cadmium uptake by the shrimp. The concentration factors decreased with increasing concentration of cadmium in water but increased as the duration of exposure increased. The shrimp dry weight decreased with increasing concentration of cadmium in water and duration of exposure. As was the case with cadmium uptake by the shrimp, these two factors acted interactively on the shrimp dry weight, but the third factor, concentration of cadmium in sediment, had no effect.  相似文献   

20.
An ecological survey was carried out to determine the sediment concentrations of nutrients and heavy metals and bioaccumulation of heavy metals in fish and shrimp including tilapia (Oreochromis mossambicus×O. nilotica), grey mullet (Mugil cephalus), gei wai shrimp (Metapenaeus ensis) and caridean shrimp (Macrobrachium nipponensis) in the traditional tidal shrimp ponds (gei wais) of Mai Po Nature Reserve, Hong Kong. The sediments collected from the landward sites contained higher nutrient contents, as well as zinc (Zn), chromium (Cr), copper (Cu), nickel (Ni) and cadmium (Cd) than those collected from the seaward sites, but vice versa for lead (Pb) and mercury (Hg). However, the concentrations of all metals were exceptionally high in the two sites located outside the reserve, suggesting that waters from Deep Bay might be the possible source of metal contamination affecting the reserve. All metals studied seemed to accumulate in the viscera of fish. Body size was the determining factor for the accumulation of heavy metals in caridean shrimp and gei wai shrimp but not fish. Concentrations of the metals studied in tissues of grey mullet and gei wai shrimp were found to be safe for human consumption. Concentrations of Cr in tilapia whole body (0.68–1.10 mg kg−1 wet weight) were close to or over the guideline value of 1 mg kg−1 set by the Food Adulteration (Metallic Contamination) Regulations of Hong Kong. Tilapia flesh and small caridean shrimp collected from gei wais were contaminated by Cr and Pb but still fit for human consumption. Caution is required if large caridean shrimp is to be consumed in large amounts continuously because the concentration of Pb exceeded the maximum permitted concentration (6 mg kg−1). The rather high Cr concentrations in tilapia whole body should not be overlooked as the fish will serve as a food source for migratory birds visiting the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号