首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
畜禽养殖是重要的污染源之一,对我国水土环境造成威胁.了解畜禽养殖污染现状,健全畜禽养殖污染分区与管理,完善畜禽养殖场地修复技术具有重要意义.通过资料收集及近几年的数据统计,结合研究学者对畜禽场地规范及修复技术统计,总结分析了国内外现有的畜禽养殖修复技术的优势与不足,提出了污染防治、科学规划、发展场地修复技术等对策.  相似文献   

2.
农村畜禽养殖污染的综合防治   总被引:1,自引:0,他引:1  
张晓燕 《四川环境》2014,(2):98-102
畜禽养殖污染已成为农村环境污染的突出问题。本文通过调查分析广安市辖区内畜禽养殖业的发展和污染现状,在实地研究广安市两个畜禽养殖示范工程的基础上,借鉴现有的畜禽养殖污染防治技术成果,提出了一套以"养殖—沼气—农灌"和"养殖—堆肥—沼气—农灌"两种模式为技术基础,结合政策和法律措施,系统防治畜禽养殖污染的方案,有助于指导农村畜禽养殖的科学、绿色发展。  相似文献   

3.
针对农村畜禽养殖种类多、地域广、规模大所造成的畜禽污染物产生以及收集方式多样,单一的处理技术无法满足养殖污染物控制要求的问题,对畜禽养殖污染减排组合处理技术进行了综述。  相似文献   

4.
四川省畜牧养殖业污染现状及防治研究   总被引:2,自引:0,他引:2  
畜禽养殖业污染问题近年已成为农村污染的主要来源.通过对四川省畜禽养殖业主要污染物排放现状进行阐述,分析四川省畜禽规模化养殖和养殖专业户生产情况,以及对5种畜禽主要污染物产排污系数的分析,提出四川省畜禽养殖污染防治的技术指导.  相似文献   

5.
邢台市畜禽粪尿污染现状分析及对策   总被引:1,自引:0,他引:1  
利用统计资料和文献数据,结合国内外研究,确定邢台市畜禽粪尿资源的计算参数和计算方法,估算了邢台市畜禽粪尿产生量及其中的氮磷养分的含量、CODCr含量和单位耕地负荷量,并分地区提出畜禽养殖污染负荷警报值,为邢台市畜禽养殖污染防治提供科学依据与技术支持。  相似文献   

6.
程艳  马俊英 《新疆环境保护》2012,34(3):24-27,32
基于新疆农牧区畜牧业发展历史、现状及趋势分析,分别对新疆农牧区畜禽养殖的污染现状、分布特征、污染防治现状及存在问题进行了估算与分析,并对未来新疆畜禽养殖污染的变化趋势进行了预测,针对不同区域提出了新疆畜禽养殖污染防治的重点区域和防治对策。  相似文献   

7.
立足天津市滨海新区大港农业背景情况,采用适宜的方法,分别从种植业、畜禽养殖和水产养殖业三方面分析非点源污染物排放量。结果表明:2010年大港地区农业非点源主要污染物COD排放量为377.67 t,氨氮排放量为72.33 t,畜禽养殖排放的污染已占农业非点源污染的一半以上。在此基础上,分别从优化畜禽养殖的养殖模式、种植业科学施用化学品、水产养殖合理投放饲料等方面提出了大港地区农业非点源污染控制的对策。  相似文献   

8.
立足天津市滨海新区大港农业背景情况,采用适宜的方法,分别从种植业、畜禽养殖和水产养殖业三方面分析非点源污染物排放量。结果表明:2010年大港地区农业非点源主要污染物COD排放量为377.67 t,氨氮排放量为72.33 t,畜禽养殖排放的污染已占农业非点源污染的一半以上。在此基础上,分别从优化畜禽养殖的养殖模式、种植业科学施用化学品、水产养殖合理投放饲料等方面提出了大港地区农业非点源污染控制的对策。  相似文献   

9.
"十二五"期间,我国将畜禽养殖纳入主要污染物减排管理体系,为畜禽养殖污染防治带来良好的契机。通过分析总结国外发达国家畜禽养殖污染防治的环境监管体系和资金管理体系特征,提出我国"十二五"期间的规模化畜禽养殖污染防治治理成本构想。  相似文献   

10.
为提高江苏省畜禽养殖污染治理水平,达到污染减排要求,完成污染减排任务,本文从分析江苏省畜禽养殖业污染产生量、排放量和污染特征入手,对污染治理措施和法律、法规及政策支撑等进行了归纳总结,深入分析了目前治理中存在的主要问题,提出了适合江苏畜禽养殖污染治理的技术模式,以及促进污染减排目标实现的管理机制和保障条件。  相似文献   

11.
Evolving policies to regulate pollution from animal feeding operations   总被引:2,自引:0,他引:2  
Due to concentrations of animals at large facilities, animal feeding operations (AFOs) have emerged as a major potential source of water pollution. The federal government regulates concentrated animal feeding operations under its point-source pollution permitting regulations. A major determinant of whether an operation must apply for a permit is the number of animals at an individual lot or facility. This paper examines federal mandatory controls and voluntary guidelines that seek to reduce contaminant pollution from AFOs. Land treatment practices are delineated due to their importance in reducing the injurious by-products of agricultural production. An evaluation of proposed revisions to federal regulations on confined animal feeding operations suggests they diverge from their goal of controlling water pollution. Federal regulations focus on the size of operation and amount of manure governed by the permitting process to the exclusion of other criteria related to the impairment of water quality. Given the uncertainties about the amount of pollution from AFOs, lack of enforcement of existing regulations, localization of problems, and possible alternatives for addressing the pollution, more demanding federal regulations may not form an appropriate response.  相似文献   

12.
ABSTRACT: Bacterial contamination of surface waters is attributed to both urban and agricultural land use practices and is one of the most frequently cited reasons for failure to meet standards established under the Clean Water Act (CWA) (P.L. 92–500). Statewide modeling can be used to determine if bacterial contamination occurs predominantly in urban or agricultural settings. Such information is useful for directing future monitoring and allocating resources for protection and restoration activities. Logistic regression was used to model the likelihood of bacterial contamination using watershed factors for the state of Maryland. Watershed factors included land cover, soils, topography, hydrography, locations of septic systems, and animal feeding operations. Results indicated that bacterial contamination occurred predominantly in urban settings. Likelihood of bacterial contamination was highest for small watersheds with well drained and erodible soils and a high proportion of urban land adjacent to streams. The number of septic systems and animal feeding operations and the amount of agricultural land were not significant explanatory factors. The urban infrastructure tends to “connect” more of the watershed to the stream network through the creation of roads, storm sewers, and wastewater treatment plants. This may partly explain the relationship between urbanization and bacterial contamination found in this study.  相似文献   

13.
Trace and minor element concentrations differ in animal tissues as the result of the surrounding environment (feeding plants, soil contaminated with food and drinking water) and animal absorption of these elements. Concentrations of Ag, Au, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, and Zn were determined from different tissues of camel (inter-costal, scapula, sirloin, flank, front knuckle and front limb) from the semi-arid areas of the Aswan desert (Wadi El-Allaqi) and from Aswan city, Egypt. The study included an assessment of these same elements in the desert and city plants used as food by the camels and in soils from the study areas. The results reveal that camel tissues from the desert areas exhibited higher concentrations of Na, Mg, K, Au, Ag, Cu, Co and Zn than in those of the city camels. These higher levels of element are because of the high concentrations of the same elements in the desert plants and soil of the desert area. This, in turn, depends upon the geological formation differences between the desert area and the city area. Camel tissues appear to concentrate high levels of Mn, Ni, Co and Mg in the scapula while flank portions concentrate high levels of Mg and K. The levels of elements in the camel tissues under study were within the recommended safety baseline levels for camel health and human use, as well as within the appropriate limits in the desert and city plants for camel use.  相似文献   

14.
ABSTRACT: The processing of waste from confined animal feeding operations (CAFOs) presents a major environmental challenge. Treatment of waste and subsequent land application is a common best management practice (BMP) for these operations in Kentucky, USA, but there are few data assessing the effect of runoff from such operations on aquatic communities. The authors sampled a stream bordering a CAFO with a land application program to determine if runoff from the fertilized fields was adversely affecting stream communities. Water chemistry, periphyton, and macroinvertebrate samples from riffle habitats downstream of the CAFO were compared to samples collected from an upstream site and a control stream in 1999 and 2000. Riffle communities downstream of the fertilized fields had higher chlorophyll a levels than other sites, but there were no significant differences in macroinvertebrate numbers or in biometrics such as taxa richness among the sites. The BMP in place at this site may be effective in reducing this CAFO's impact on the stream; however, similar assessments at other CAFO sites should be done to assess their impacts. Functional measures such as nutrient retention and litter decomposition of streams impacted by CAFOs should also be investigated to ensure that these operations are not adversely affecting stream communities.  相似文献   

15.
ABSTRACT: The high spatial variability of nitrate concentrations in ground water of many regions is thought to be closely related to spatially-variable leaching rates from agricultural activities. To clarify the relative roles of the different nitrate leaching controlling variables under irrigated agriculture in northeastern Colorado, we conducted an extensive series of leaching simulations with the NLEAP model using best estimates of local agricultural practices. The results of these simulations were then used with GIS to estimate the spatial variability of leachate quality for a 14,000 ha area overlying the alluvial aquifer of the South Platte River. Simulations showed that in the study area, differences in soil type might lead to 5–10 kg/ha of N variation in annual leaching rates while variability due to crop rotations was as much as 65 kg-N/ha for common rotations. Land application of manure from confined animal feeding operations may account for more than 100 kg-N/ha additional leaching. For a selected index rotation, the simulated nitrogen leaching rates across the area varied from 10 to 299 kg/ha and simulated water volumes leached ranged from 13 to 76 cm/yr depending on soil type, irrigation type, and use of manure. Resulting leachate concentrations of 3.5–140 mg/l NO3 as N were simulated. Land application of manure was found to be the most important factor determining the mass flux of nitrate leached and the combination of sprinkler irrigation and manure application yields the highest leachate concentrations.  相似文献   

16.
Concerns about manure P and water quality have prompted new regulations imposing P limits on land application of manure. Previous research established that P limits increase land needs for animal feeding operations. We evaluated the effect of N, annual P, and rotation P limits on the feasibility of manure management. A mechanistic model characterized manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Extensive information collected from each operation was used to determine effects of manure storage type, ownership structure, and application limits on attributes of manure management. Phosphorus limits had substantially greater effect on slurry operations, increasing land needs 250% (0.3 hectares per animal unit [AU]) and time for manure application 24% (2.5 min AU(-1)) for rotation P limits and 41% (4.4 min AU(-1)) for annual P limits. Annual P limits were infeasible for current land application equipment on two operations and had the greatest effect on time and costs because they required all but three slurry operations to reduce discharge rate. We recommend implementing rotation P limits (not to exceed crop N need) to minimize time effects, allow most farmers to use their current manure application methods, and allow manure to fulfill crop N and P needs in the year of application. Phosphorus limits increased potential manure value but would require slurry operations to recover at least 61% of manure value through manure sales. Phosphorus limits are likely to shape the U.S. swine industry through differential effects on the various sectors of the swine industry.  相似文献   

17.
畜禽粪便中大量有机污染物污染着人们赖以生存的土壤和水体,粪尿分解产生的大量有害气体污染了大气。本文结合日照市畜牧业生产的实际,对日照市畜牧业生产对环境的污染现状进行了分析,找出了日照市畜牧业生产对环境污染产生的主要原因和存在问题,提出畜牧业生产对环境污染的防治对策。  相似文献   

18.
As a part of the USEPA's concentrated animal feeding operation (CAFO) final rule, all CAFOs are required to develop and implement a nutrient management plan (NMP). The USEPA's emphasis on better management of nutrients appropriately targets a critical environmental issue associated with animal production. The concentration of animals in livestock feeding operations, often separate from feed grain production, requires importing of substantial quantities of feed nutrients. Due to the inefficiencies of nutrient utilization in livestock production, quantities of nitrogen (N) and phosphorus (P) in manure greater than can be utilized in local crop production often result. With the focus of the USEPA's NMP rules on internal farm manure management planning, nutrient concentrations resulting from animal concentration may not be adequately addressed by compliance with the USEPA rules alone. A review of two mandatory and two voluntary nutrient management strategies is made by comparing whole-farm nutrient balance for a case-study beef cattle feedlot. The results suggest that voluntary BMPs, such as modification to animal feeding program and exporting of manure, can have greater environmental benefits (30-60% reduction in P accumulation for case-study farm) than mandatory NMPs and buffers (5-7% reduction in P accumulation for case-study farm) for a typical beef cattle feedlot. Whole-farm nutrient balance procedures can also be valuable for reviewing the nutrient performance of livestock systems.  相似文献   

19.
Water quality concerns and revised regulations are changing how confined animal feeding operations manage manure. Devising acceptable and feasible changes in manure practices requires a full understanding of the forces shaping current manure management decisions. Previous theoretical models have shown that a wide range of factors influence the lowest cost solution for manure management. We used a mechanistic model to characterize the manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Information was collected from each operation about animal numbers, feed and water use, manure handling and storage characteristics, field locations, crop rotation, fertilizer need, and equipment inventory and usage. Collected data were used as input and to validate results from a mechanistic model that determined acres required for manure application, manure application rate, time required for manure application, value of manure, and costs of manure management. The 39 farms had a mean of 984 animal units (AU) per operation, 18.2 AU ha(-1) (7.4 AU acre(-1)), and manure application costs of dollar 10.49 AU(-1) yr(-1). Significant factors affecting manure management included operation size, manure handling system, state, and ownership structure. Larger operations had lower manure management costs (r2 = 0.32). Manure value potentially exceeded manure application costs on 58% of slurry and 15% of lagoon operations. But 38% of slurry operations needed to apply manure off the farm whereas all lagoon operations had sufficient land for N-based manure management. Manure management was a higher percentage of gross income on contract operations compared with independents (P < 0.01). This research emphasized the importance of site-specific factors affecting manure management decisions and the economics of U.S. swine operations.  相似文献   

20.
ABSTRACT: Public Law 92–00 has mandated the need for evaluating the impact of nonpoint source pollution on receiving water quality, primarily through Section 208 Areawide Planning. The Management of Urban Non-Point Pollution (MUNP) model was developed to estimate the accumulation of eight non-point pollutants on urban streets, their removal by both rainfall and street sweeping operations. The model can simulate the following pollutants: total solids or sediment-like material, volatile solids, five-day biochemical oxygen demand, chemical oxygen demand, Kjeldahl nitrogen, nitrates, phosphates, and total heavy metals. The simulated results can be used for investigation of non-point pollution management alternatives. The model is capable of reflecting variation in such diverse factors as physical and chemical characteristics of accumulated pollutants, land use characteristics, rainfall characteristics, street sweeper characteristics, roadway characteristics, and traffic conditions. By using mean estimates of many input variables for large segments of a city, the MUNP model could be used to quickly assess the magnitude of pollutants annually entering receiving waterways due to nonpoint source pollution alone. If the results indicate that non-point pollution loadings are sizeable and require futher analysis, the MUNP model could be used to define the specific nonpoint source pollution areas within a city. Hypothetical locations and actual rainfall data for Washigton D.C. were used to demonstrate some capabilities of the MUNP model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号