共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
上海河流氮负荷的年际变化及其水体富营养化的原因探讨 总被引:2,自引:1,他引:2
利用1990-2002年水质监测数据,分析了上海河流水体中氮负荷(总氮和氨氮)的年际变化特征:从整体上来看,上海河流水体氮负荷较大,氮污染严重:苏州河、黄浦江下游河段氮负荷明显高于上游河段,市区河流氮负荷明显高于郊区河流;从年际变化上看,苏州河、黄浦江、市区河流(除龙华港)水体历年氮含量有降低趋势,郊区河流水体历年氮含量有增长趋势。在此基础上,从六个方面讨论了造成上海河流水体富营养化的原因,以期为上海市河流综合整治的规划决策提供重要的科学依据。 相似文献
3.
4.
太湖流域小型水源性湖泊氮、磷时空分布及营养状态评价 总被引:3,自引:0,他引:3
2009年11月至2010年10月,对太湖流域小型水源性湖泊20个采样点水体的TN、TP、NO3--N、NH4+-N、NO2--N以及PO43-等水质因子进行测定分析,讨论了氮、磷时空分布特征,并评价其富营养化程度。结果表明,TN、TP年均值分别为1.50、0.05mg/L;TN、TP的季节性变化规律具有一定差异,TN浓度为冬、春季高于夏、秋季,而TP浓度为2009年11月至2010年3月高于其他月份。由于受入湖河流的影响,TN、TP的空间分布格局较为相似,均表现为西南部高于东北部、入湖口分别高于湖中心和出湖口。NO3--N年均值为0.68mg/L,浓度变化趋势呈双峰型(2010年3、9月为峰值),基本同TN的变化趋势一致,空间分布表现为入湖口分别低于湖中心和出湖口(除冬季外),显示水体硝化过程对硝酸盐的贡献。NH4+-N年均值为0.23mg/L,从2010年4月开始浓度逐渐升高,到2010年7月达到全年最高值,其浓度空间分布特征表现为入、出湖口均高于湖中心(除秋季外)。NO2--N和PO43-的年均值都较低,均为0.01mg/L(以P计),时空差异不明显。根据CARLSON提出的营养状态指数法计算分析可知,该湖泊冬、春季处于中营养状态,夏、秋季营养状态略高,且磷是全年初级生产力的限制因子。 相似文献
5.
谢坤;吴雪;何佳;张英;付潇华;周鸿斌;邓伟明;朱启凤 《环境污染与防治》2024,(6):882-889+895
为了探究滇池流域氮、磷干湿沉降对滇池水体外源输入营养盐的贡献率,于2021年收集了滇池流域六大功能区的雨水及降尘,测定大气沉降中不同形态氮、磷质量浓度,分析滇池流域氮、磷大气沉降分布特征,并估算氮、磷干湿沉降全年沉降通量及对滇池入湖负荷的贡献。结果表明:流域内全年大气总氮(TN)、总磷(TP)湿沉降通量分别为20.244~220.938、1.155~65.826 kg/km2,干沉降通量分别为44.275~481.120、4.255~111.840 kg/km2;工业生产和矿产开发功能区分别为流域氮、磷干湿沉降通量最高的区域。溶解性无机氮(DIN)和溶解性无机磷(DIP)是大气沉降中氮、磷的主要形态;流域内氮、磷大气沉降入湖负荷分别为1 018.92、88.88 t,其中滇池湖面大气直接沉降负荷占流域入湖污染负荷总量的3.70%和2.35%,流域其他区域入湖系数换算下大气沉降入湖负荷在流域河流入湖负荷中的占比分别为8.69%和6.26%。流域氮、磷大气沉降已逐渐成为滇池外源污染物的重要来源之一,深入掌握其时空分布特征及入湖贡献率是进一步加强流域管理和减轻湖体外源污染物输入的重要前提。 相似文献
6.
上海大气氮湿沉降的污染特征 总被引:7,自引:1,他引:7
为探讨上海大气氮湿沉降的污染特征,采集了2007年11月至2008年10月上海雨水样品,分析了大气氮湿沉降浓度,探讨了上海大气湿沉降氮通量及上海市区,市郊和远郊大气氮湿沉降的时空污染特征.结果表明:(1)上海市区、市郊和远郊大气氮湿沉降质量浓度平均值分别为2.96、2.31、2.21 mg/L.从上海大气湿沉降总体来看,大气氮湿沉降劣V类、V类的超标率分别达到51.09%和13.87%.推断大气氮湿沉降的主要来源是机动车辆所排放的大量氮氧化物.(2)除冬季外,其余季节上海市区大气氮湿沉降浓度均大于市郊和远郊;市区和远郊大气氮湿沉降浓度均在秋季最大,市郊大气氮湿沉降浓度在春季最大.(3)上海大气年氮湿沉降通量为78.42 kg/hm~2,同其他区域相比较,属于世界上高氮沉降区域.(4)上海大气月氮沉降通量与月平均降雨量呈显著的线性正相关(p<0.05),说明上海大气氮湿沉降通量主要受降雨量的影响. 相似文献
7.
为研究大气降尘对土壤、水体等环境介质中氮的贡献,在邯郸市区设置3个大气干湿沉降采样点,并进行了为期1年的监测。根据监测数据分析了氮干湿沉降通量、氮形态及随季节的变化。结果显示,监测期内3个采样点的全年平均氮干沉降通量为385.2kg/km~2,湿沉降通量为2 292.5kg/km~2,总沉降通量为2 677.7kg/km~2。氮沉降以湿沉降为主,占总沉降通量的85.6%。氮湿沉降通量与降雨量线性相关(R~2=0.87),各采样点的降雨量和氮湿沉降主要集中在4—8月。氮干沉降与降尘量均随季节变化,总的来说冬春季开始增长,夏季降低,到了初秋又开始增长,并在10月达到峰值。不论是干沉降还是湿沉降,各监测点氮形态都是以有机氮为主,硝酸盐氮次之,氨氮所占比例最低。 相似文献
8.
9.
10.
采用RAINS ASIA模型研究了"十一五"期间长三角地区实施脱硫措施前后硫沉降超临界负荷的变化.结果表明,在90%保证率下,长三角地区硫沉降的临界负荷(以S计,下同)总值为78.38万t/a;2005年该地区硫沉降的超临界负荷总值为27.98万t/a,有45.6%区域面积的硫沉降超过临界负荷;如果不实施脱硫措施,到2010年长三角地区硫沉降超临界负荷的情景将急剧恶化,硫沉降超临界负荷总值将增长18.4%,超临界负荷的区域面积将增加到48.7%;"十一五"脱硫计划如期实施后,2010年长三角地区硫沉降超临界负荷总值将在2005年的基础上下降27.4%,但仍有39.1%的区域面积超过临界负荷,须采取更严格的措施控制硫沉降量. 相似文献
11.
W. de Vries J.E. Groenenberg 《Environmental pollution (Barking, Essex : 1987)》2009,157(12):3422-3432
This paper evaluates approaches to calculate acceptable loads for metal deposition to forest ecosystems, distinguishing between critical loads, stand-still loads and target loads. We also evaluated the influence of including the biochemical metal cycle on the calculated loads. Differences are illustrated by examples of Cd, Cu, Pb and Zn for a deciduous forest on five major soil types in the Netherlands. Stand-still loads are generally lower than critical loads, which in turn are lower than the target loads indicating that present levels are below critical levels. Uncertainties in the calculated critical loads are mainly determined by the uncertainty in the critical limits and the chemical speciation model. Including the metal cycle has a small effect on the calculated critical loads. Results are discussed in view of the applicability of the critical load concept for metals in future protocols on the reduction in metal emissions. 相似文献
12.
Belyazid S Kurz D Braun S Sverdrup H Rihm B Hettelingh JP 《Environmental pollution (Barking, Essex : 1987)》2011,159(3):789-801
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. 相似文献
13.
Hornung M Bull KR Cresser M Hall J Langan SJ Loveland P Smith C 《Environmental pollution (Barking, Essex : 1987)》1995,90(3):301-310
The method used to produce a critical load map of acidity for soils in Great Britain is described. Critical loads were assigned to the dominant soil in each 1 km grid square of the UK national grid. Mineral soils were assigned a critical load based on mineralogy and chemistry, using approaches appropriate to UK conditions. Critical loads for peat soils are based primarily on a maximum acceptable reduction of peat pH, and results from laboratory equilibration studies. The map shows that soils with small critical loads (<0.5 kmolc ha−1 year−1) i.e. highly sensitive to acidic deposition, dominate in the north and west of Britain; the south and east are dominated by soils with large critical loads, with small areas of more sensitive soils associated with sandy soil-forming materials. A modified critical load map illustrates the potential impact of agricultural liming on soil critical loads. 相似文献
14.
Linda H. Geiser Sarah E. Jovan Matthew K. Porter 《Environmental pollution (Barking, Essex : 1987)》2010,158(7):2412-2421
Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America’s maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha−1 y−1 in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. 相似文献
15.
Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe 总被引:1,自引:0,他引:1
We investigated the variation of N:P and N:K ratio in ombrotrophic Sphagnum plants along a gradient of atmospheric N deposition from 1 to 2.5 g m−2 year−1 in Central-East Europe. The N:P and N:K ratio in Sphagnum capitula increased significantly along the N deposition gradient. Sphagnum species from the Cuspidata section were characterised by significantly lower ratios at low N deposition. When we compared the observed N:P ratios in Sphagnum plants with the values reported in a previous European-wide study, we found a correspondence in nutrient stoichiometry only for a few bogs: higher P concentration in Sphagnum capitula caused a lower N:P ratio in most of the study bogs so that Sphagnum plants still seem N-limited despite their N saturation. Interaction between summer water table decrease and aerial liming of surrounding forests is proposed as an explanation for this discrepancy. Local forestry practice interacting with climate thus alter N:P stoichiometry of Sphagnum along the N deposition gradient. 相似文献
16.
Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests 总被引:2,自引:0,他引:2
Fenn ME Jovan S Yuan F Geiser L Meixner T Gimeno BS 《Environmental pollution (Barking, Essex : 1987)》2008,155(3):492-511
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance. 相似文献
17.
High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain 总被引:2,自引:0,他引:2
J.L. Shen A.H. Tang X.J. Liu A. Fangmeier K.T.W. Goulding F.S. Zhang 《Environmental pollution (Barking, Essex : 1987)》2009,157(11):3106-3113
Atmospheric concentrations of major reactive nitrogen (Nr) species were quantified using passive samplers, denuders, and particulate samplers at Dongbeiwang and Quzhou, North China Plain (NCP) in a two-year study. Average concentrations of NH3, NO2, HNO3, pNH4+ and pNO3− were 12.0, 12.9, 0.6, 10.3, and 4.7 μg N m−3 across the two sites, showing different seasonal patterns of these Nr species. For example, the highest NH3 concentration occurred in summer while NO2 concentrations were greater in winter, both of which reflected impacts of N fertilization (summer) and coal-fueled home heating (winter). Based on measured Nr concentrations and their deposition velocities taken from the literature, annual N dry deposition was up to 55 kg N ha−1. Such high concentrations and deposition rates of Nr species in the NCP indicate very serious air pollution from anthropogenic sources and significant atmospheric N input to crops. 相似文献
18.
We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900-2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios (no change and SRES A1 scenario) were used. Furthermore, the possible limitation of forest growth by calcium, magnesium, potassium and phosphorus is investigated. The area and age structure of the forests was assumed to stay constant to observations during the period 1970-1990. Under these assumptions, the simulations show that the change in forest growth and carbon sequestration in the past is dominated by changes in nitrogen deposition, while climate change is the major driver for future carbon sequestration. However, its impact is reduced by nitrogen availability. Furthermore, limitations in base cations, especially magnesium, and in phosphorus may significantly affect predicted growth in the future. 相似文献
19.
A. Solga T. Eichert J.-P. Frahm 《Atmospheric environment (Oxford, England : 1994)》2006,40(40):8044-8055
Historical alterations of nitrogen deposition in the western part of Germany were investigated by comparing nitrogen concentrations and 15N natural abundance of historical and recent samples of the two pleurocarpous mosses Pleurozium schreberi and Scleropodium purum. Pooling of the data revealed only slight tissue N increases over the past 140 years which were significant nevertheless. At closer examination on the single site level historical increases of N concentrations were found particularly for some sites in regions where agricultural activities were considerably intensified during the second half of the 20th century. The comparison of δ15N values showed a strong depletion of 15N natural abundance in areas currently heavily influenced by livestock management. This indicates an increased impact of NHy compounds. However, the almost unchanged δ15N values in some low mountain range areas with only moderate intensification of agriculture point to a more or less constant ratio of NHy/NOx input over time. Significant correlations of both tissue N concentrations and 15N natural abundance between the two species justify the assumption that they use the same nitrogen source, probably atmospheric deposition. 相似文献