首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  Females of both species start their pheromone-releasing activity on the second day after emergence at the beginning of the photophase. During the present work, a peak of calling activity with close to 100% of active Ph. nigrescentella females was registered 1.5 hour after the light had been put on. The high pheromone release behaviour with 50% active females lasted for 3 hours. The calling activity of the group of females was about 6 h/day. The beginning of a photophase under laboratory conditions or an early morning in nature is a common period for sex pheromone release in the genus Phyllonorycter. (8Z,10E)-tetradecadien-1-yl acetate (8Z,10E-14:Ac), (8Z,10E)-tetradecadien-1-ol (8Z,10E-14:OH) and (8E,10Z)-tetradecadien-1-yl acetate (8E,10Z-14:Ac) in the ratio 96:4:traces as well as 8Z,10E-14:Ac and 8Z,10E-14:OH in the ratio 88:12 collected by Solid Phase Micro Extraction (SPME) were found to be specific for the calling periods of virgin Phyllonorycter insignitella and Ph. nigrescentella females respectively. Field trapping experiments demonstrated that all three compounds are important for the attraction of Ph. insignitella males while only 8Z,10E-14:Ac is the essential sex pheromone component for Ph. nigrescentella. The pheromone activity of all three compounds is reported for the first time. Addition of either 8Z,10E-14:OH or 8E,10Z-14:Ac to 8Z,10E-14:Ac did not have a significant effect on the attraction of Ph. nigrescentella males, while the efficiency of the three component blend was 5 times lower as compared to that of 8Z,10E-14:Ac. Our data demonstrate that 8Z,10E-14:OH and 8E,10Z-14:Ac play a dual function, they are minor sex pheromone components of Ph. insignitella essential for attraction of conspecific males and show an allelochemical, antagonistic effect on Ph. nigrescentella males and, thus, ensuring specificity of the mate location signal in two related Phyllonorycter species.  相似文献   

2.
The yellow-legged clearwing (YLC) Synanthedon vespiformis (Lepidoptera: Sesiidae) occurs in the Mediterranean and central Europe. It is polyphagous, boring into the woody parts of broadleaf species including forest trees as well as various Rosaceae species. S. vespiformis has been reported as an economically important pest causing severe injury to stone fruit plantations. Many attractants for sesiid species were discovered by random field screening using 2,13- and 3,13-octadecadienyl alcohols, acetates and aldehydes, including one for S. vespiformis; and about 20 sex pheromones of sesiids have been identified so far. In the present study we identified the natural composition of the sex pheromone of YLC laboratory reared females as a blend of E3,Z13- and Z3,Z13-octadecadienyl acetates, at a ratio of 4:1. We developed an efficient lure for monitoring the pest. Pheromone funnel traps with rubber septa, impregnated with 1 mg pheromone blend, efficiently captured males for 10 weeks. Suspension of Shin-Etsu? ropes containing a 2:1 blend of E3,Z13-18:Ac and Z3,Z13-18:Ac at 13.74 mg/ha/h, resulted in shutdown of trap catches in the treated plots and closely situated neighboring plots indicating that mating disruption is feasible.  相似文献   

3.
Summary. This study reports on the impact of insecticidal resistance on the diel periodicity of the calling behaviour and pheromone production of different-aged virgin females of the obliquebanded leafroller (OBL), Choristoneura rosaceana. While both resistant (R) and susceptible (S) females initiated calling on the first night following emergence, the periodicity of the calling behaviour, as determined by the mean onset time of calling (MOTC) and the mean time spent calling (MTSC) over the first six nights of calling, differed between the two strains. R females started calling significantly later in the night. However, as the MOTC of R females advanced with age but did not do so in S individuals, the difference between strains was more pronounced in younger than older females. Furthermore, R females spent less time calling than S individuals. However, the MTSC increased as a function of age in both R and S females, so the difference between strains remained fairly constant for each night of calling. The major component of OBL sex pheromone, the Z11-14: Ac, determined at peak calling activity, significantly declined with female age. Overall, pheromone production was lower in R females than in S females, with the difference being more pronounced in younger than in older individuals. Thus, resistant females may have a lower mating success. The mating success of both R and S strain males did not vary with the number of previous matings acquired. With regard to males, although there was a significant decline in spermatophore size with successive matings, there was no significant difference between strains. However, R males are smaller and may be disadvantaged through female choice and/or may respond differently to pheromone source compared with S individuals. If the reproductive success of both sexes is affected, this may have a profound influence on the dynamics of insecticidal resistance in the presence or absence of selection in OBL populations. Received 4 July 2001; accepted 19 October 2001.  相似文献   

4.
Summary. Both male and female Holotrichia loochooana loochooana (Sawada) (Coleoptera: Scarabaeidae) were attracted with female-produced pheromone, anthranilic acid (2-aminobenzoic acid), in the field. Male chafers were observed to apparently directly locate cotton balls impregnated with 1 to 10 mg of pheromone. In contrast, females never directly oriented to the treated balls but landed 0.2-1.5 m away and exposed their abdominal glands in a calling posture, which occasionally resulted in aggregation of both females and males. This suggested the mating aggregation of this species could be primarily induced by pheromone released by females. A hypothesis for adaptability of female aggregation is proposed and discussed.  相似文献   

5.
The sex pheromone of Stathmopoda masinissa Meyrick, an important pest of persimmon fruit in East Asia such as Korea, China, and Japan, was investigated. A lure using (E4,Z6)-4,6-hexadecadienyl acetate (E4,Z6-16Ac), which was identified as a sex pheromone compound of Japanese population, did not work at all for Korean population. Therefore, components in the abdominal extract of the moth were identified and their attractiveness was evaluated in the field. Two components, E4,Z6-16Ac and (E4,Z6)-4,6-hexadecadien-1-ol (E4,Z6-16OH) were identified from the extract of female abdominal extract in a ratio of 10–15:90–85 by GC–MS analysis with synthetic standards. E4,Z6-16Ac and E4,Z6-16OH were previously identified as EAG-active components of this moth in Japanese population. However, (E4,Z6)-4,6-hexadecadienal (E4,Z6-16Ald), which is one of the abdominal extract components and EAG-active component in Japanese population, was not detected in our samples. In the persimmon orchard, single component of E4,Z6-16Ac or E4,Z6-16OH was not attractive. However, the 1:1 mixture of the two components significantly increased the captures of male S. masinissa. Interestingly, traps baited with E4,Z6-16Ac captured significantly higher number of Oedematopoda ignipicta (Lepidoptera: Stathmopodidae) than the traps baited with E4,Z6-16OH or blend of the two components. The attractiveness of E4,Z6-16Ac to O. ignipicta is a new finding.  相似文献   

6.
Summary.  The differing antagonist activity of (Z)-13-hexadecen-2-one (Z11 – 14 :MK, 1) and its 1,1,1-trifluoro derivative (Z11 –14 :TFMK, 2), two closely related analogues of the European corn borer pheromone Ostrinia nubilalis (Z strain), and their rationale is reported. Both chemicals exhibited some electrophysiological activity, and topical application of 10 pg of pheromone analogue on male antennae was sufficient to induce significantly lower depolarization responses to the pheromone versus untreated insects. In a wind tunnel, the number of European corn borer males attracted to sources containing mixtures of 1 + pheromone in ratios ≥ 1 :1 was significantly lower than the number attracted to a source containing pheromone alone. Source contact behaviour was dramatically impaired when the 1 + pheromone blend reached a ratio of 10 :1, in which only 2% of males displayed source contact in the presence of antagonist. When compound 1 was present at the source, males usually flew upwind with occasional downwind reversals; when compound 2 was present at the lure, males performed wider crosswind reversals, with little progress toward the source. In the field, traps baited with mixtures of both compounds with the pheromone in ratios of 5 :1 and 10 :1 elicited a significantly decreased number of male catches. In esterase inhibition assays, compound 2 was a potent inhibitor (IC50 = 70 nM), whereas the non-fluorinated compound 1 was not. The different activity of both compounds is presumed to be due to different mechanisms of action; considerations for using methyl ketone analogues as new behavioural antagonists of the pheromone are outlined.  相似文献   

7.
Summary A crude cuticular extract from 3450 virgin 9–13 day old female fruit flies(Drosophila virilis), was subjected to chromatography accompanied by bioassay for sex pheromone activity. After three chromatographic steps, fractions containing active monoenes and dienes were obtained. Chemical analysis by infrared absorption, gas liquid chromatography and gas chromatography/mass spectrometry of the active fraction indicated that active monoenes were comprised chiefly of (Z)-11-pentacosene (abbreviated (Z)-11-C25:1), (Z)-13-C27:1, (Z)-13- and (Z)-14-C29:1. Synthetic monoenes were made, and only (Z)-11-C25:1 elicited good courtship behaviour in maleD. virilis. Therefore it was concluded that (Z)-11-C25:1 was a major sex pheromone. A total of 16.2±1.32 µg of cuticular hydrocarbons was isolated from 10 day old females, including 5.9±0.56 µg of (Z)-11-C25:1. An additive effect was suggested from the higher observed courtship response when using a mixture of active dienes with the active monoene.  相似文献   

8.
Females ofBlattella germanica andBlaberus craniifer produce a volatile sex pheromone attractive at a distance for conspecific males. During the emission of the pheromone, females ofB. craniifer adopt a typical calling posture; we never observe such a stance inB. germanica females. For both species, the glandular structures responsible for pheromonal production are located on the female pygidium. InB. germanica, the thickness of the glandular epithelium is clearly correlated with the attractiveness of females, being maximum for 13 day old females. The functions of the pygidial glands are discussed in both species.  相似文献   

9.
Summary The capture of adult male moths in female sex pheromone traps of two key agricultural pests, the corn earworm (Helicoverpa zea) and the codling moth (Cydia pomonella), is enhanced or synergized by a certain group of host-plant volatiles, the green-leaf volatiles (GLVs). Since female adults of both species call and release their sex pheromones while perched upon the leaves of their host-plants, the volatile constituents from the leaves of a number of host-plants were compared. Sex pheromone traps containing one of the prominent leaf volatiles of certainH. zea hosts, (Z)-3-hexenyl acetate, not only significantly increased the capture ofH. zea males but were preferred over traps baited only with sex pheromone. Similarly, traps baited with synthetic sex pheromome ofC. pomonella plus a blend of GLVs captured significantly more males than traps baited only with sex pheromone. Since male moths are not captured in traps baited only with these GLVs, it appears that these GLVs act as pheromone synergists which increase or enhance the attraction or arrestment of male moths in pheromone traps.  相似文献   

10.
Summary. The sex pheromone of Ostrinia orientalis (Lepidoptera: Crambidae) was analyzed by gas chromatography–electroantennographic detection (GC–EAD), GC–mass spectrometry and a series of bioassays. Three EAD-active compounds were detected in the female sex pheromone gland extract, and identified as tetradecyl acetate (14:OAc), (Z)-11-tetradecenyl acetate (Z11-14:OAc) and (E)-11-tetradecenyl acetate (E11-14:OAc). The titers (ratio) of 14:OAc, Z11-14:OAc and E11-14:OAc in 3-day-old virgin females were 0.49 ng (10), 4.86 ng (98) and 0.10 ng (2), respectively. In a wind-tunnel bioassay, the 98:2 blend of Z11- and E11-14:OAc, but not Z11-14:OAc alone, elicited the same male behavioral responses as virgin females and crude gland extracts. 14:OAc was inactive by itself, and did not show any synergistic effect on the binary blend. Field trapping experiments also confirmed the attractiveness of the binary blend to O. orientalis males. Based on these results, we concluded that the sex pheromone of O. orientalis is a 98:2 mixture of Z11-14:OAc and E11-14:OAc. This sex pheromone is very similar to that of the Z-type European corn borer, O. nubilalis. The present finding raises the question of whether O. orientalis , which is indistinguishable from O. nubilalis based on external morphology, is a biologically distinct species independent from O. nubilalis.  相似文献   

11.
Summary. To gain insight into the evolution of the sex pheromone communication system in Ostrinia (Lepidoptera Pyralidae), the sex pheromone of the burdock borer, O. zealis was analyzed by means of gas chromatography-electroantennographic detection (GC-EAD), GC-mass spectrometry and a series of bioassays. Four EAD-active compounds were detected in the female sex pheromone gland extract, and these were identified as tetradecyl acetate (14:OAc), (Z)-9-tetradecenyl acetate (Z9–14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc) and (Z)-11-tetradecenyl acetate (Z11-14:OAc). The average amounts (ratio) of the four compounds in single sex pheromone glands were 2.5 ng (13%), 11.6 ng (61%), 4.1 ng (21%) and 0.9 ng (5%), respectively. In a wind-tunnel bioassay, the ternary blend of Z9-, E11- and Z11-14:OAc at a ratio found in the sex pheromone gland elicited the same behavioral responses from the males as did virgin females. 14:OAc did not show any enhancement or inhibition of the males’ behavioral responses when added to the ternary blend. The attractiveness of the 3-component lure to O. zealis males was also confirmed by field trapping experiments. Based on these results, we concluded that the sex pheromone of O. zealis is composed of Z9-14:OAc, E11-14:OAc and Z11-14:OAc at a ratio of 70:24:6. The evolutionary changes of the sex pheromones in Ostrinia are also discussed based on the presently available information on the sex pheromones and phylogenetic relationships of Ostrinia spp. Received 25 September 1998; accepted 2 December 1998.  相似文献   

12.
Summary. In order to elucidate the composition of the female sex pheromone of the northern (beech) winter moth, Operophtera fagata Scharf. (Lepidoptera: Geometridae), ovipositor extracts of unmated, calling females were analysed by gas chromatography with simultaneous electroantennographic and flame ionization detection (GC-EAD/FID). Male antennal responses indicated three active components, two of which had distinct matching peaks in the FID trace. Using coupled gas chromatography- mass spectrometry (GC-MS), these two compounds were identified as (9Z)-nonadecene (9Z-19:Hy), and (6Z,9Z)-nonadecadiene (6Z9Z-19:Hy), respectively. The third component, present in very small amounts only, was identified as (1,3Z,6Z,9Z)-nonadecatetraene (1,3Z6Z9Z-19:Hy), known as the sex pheromone of the common winter moth, O. brumata. Field tests revealed that traps baited with 6Z9Z-19:Hy and 1,3Z6Z9Z-19:Hy caugth large numbers of male O. fagata. Both compounds were found to be essential for attraction of O. fagata. In addition, the diene prevented captures of co-occurring O. brumata. In contrast, 9Z-19:Hy neither influenced the attractiveness of the two-component mixture towards O. fagata nor contributed to bait specificity. A binary mixture of 6Z9Z-19:Hy and 1,3Z6Z9Z-19:Hy in a ratio of 10:1, applied to pieces of rubber tubing, constituted a highly attractive and species-specific bait for O. fagata, which can be used for monitoring of the flight of this defoliator pest of deciduous forests.  相似文献   

13.
Foragers of several species of stingless bees deposit pheromone spots in the vegetation to guide recruited nestmates to a rich food source. Recent studies have shown that Trigona and Scaptotrigona workers secrete these pheromones from their labial glands. An earlier report stated that species within the genus Geotrigona use citral from their mandibular glands for scent marking. Since convincing experimental proof for this conjecture is lacking, we studied the glandular origin of the trail pheromone of Geotrigona mombuca. In field bioassays, newly recruited bees were diverted by artificial scent trails that branched off from the natural scent trail deposited by their nestmates only when they were baited with extracts from the foragers’ labial glands. Compounds extracted from the mandibular glands, however, did not release trail following behavior. This demonstrates that the trail pheromone of G. mombuca is produced in the labial glands, as in Trigona and Scaptotrigona. Furthermore, in chemical analyses citral was identified exclusively in the foragers’ mandibular glands, which disproves its supposed role as a trail pheromone. The labial glands contained a series of terpene- and wax type esters, with farnesyl butanoate as major constituent. We, therefore, postulate that the trail pheromone of G. mombuca is composed of a blend of esters.  相似文献   

14.
Summary. Research on insect migration has justifiably emphasized females – the so-called “oogenesis-flight syndrome”– since it is the females that place the eggs into new habitats. The large and small milkweed bugs, Oncopeltus fasciatus and Lygaeus kalmii, respectively, have featured prominently in studies of insect migration and sequestration of host plant toxins for chemical defense. Here we report that males of these species, and males of another well-studied lygaeine (Neacoryphus bicrucis), produce pheromones in glands usually considered to serve only a defensive role in Heteroptera (the metathoracic scent glands), and that these pheromones are exploited by a tachinid parasitoid as a host-finding kairomone. The pheromones are mixtures of C6 and C8 saturated and unsaturated esters reminiscent of lepidopteran pheromones, and the key compound of the O. fasciatus pheromone has now been correctly identified as (E)-2,7-octadienyl acetate. It is proposed that the concept of the oogenesis-flight syndrome for these kinds of insects should accommodate the role of males in the migration process. The hypothesis is presented that male-produced pheromones play a significant role in guiding colonization of new habitats in many heteropteran species. In addition, data are presented suggesting that there is a trade-off between the amount of pheromone produced by colonizing males and the host breadth of the species. Received 21 December 1998; accepted 15 February 1999.  相似文献   

15.
In the olive fruit fly, Bactrocera oleae, females attract males by producing 1,7-dioxaspiro[5.5]undecane (olean), the main component of the sex pheromone secreted by rectal glands. It has been recently demonstrated that males are able to produce (Z)-9-tricosene (muscalure) in rectal glands, a compound that selectively attracts females. In this study, a male grooming reaction that may transfer the male-borne compounds from rectal to urotergal glands was observed, suggesting that urotergal glands could be involved in B. oleae sexual communication. GC/MS, EAG, GC/EAD analyses and behavioural assays were carried out to compare the role of male rectal and urotergal glands during courtship. In both male glands, olean and muscalure amounts were age dependent. Extracts of rectal glands contained higher amounts of olean and/or muscalure than urotergal ones. Extracts of rectal and urotergal glands of males and females elicited EAG responses in both sexes. GC/EAD showed that female EAG response to male rectal extracts was mainly due to olean and muscalure. Synthetic compounds evoked EAG dose-dependent responses in both sexes, and the EAG response to muscalure was higher as compared to olean. Rectal and urotergal glands from old males were able to attract females, while urotergal glands from young males attracted only males. Overall, our results add knowledge to the mating system of B. oleae, giving first evidences on the electrophysiological activity of muscalure towards both sexes, as well as on the involvement of male urotergal glands in the chemical sexual communication of this pest.  相似文献   

16.
Summary Sex pheromone communication in the nine European species of small ermine moths (Yponomeuta) is reviewed in regard to the potential role of pheromones in the speciation process. Six of the nine species studied (viz.,Y. evonymellus, Y. cagnagellus, Y. padellus, Y. irrorellus, Y. plumbellus, andY. vigintipunctatus) use a mixture of (E)-11-and (Z)-11-tetradecenyl acetate in different ratios as primary pheromone components, with combinations of tetradecyl acetate, (Z)-9-tetradecenyl acetate, (Z)-11-hexadecenyl acetate and the corresponding alcohols of the acetates as additional pheromone components. Analysis of (Z)- to (E)-11-tetradecenyl acetate ratios produced by individual females of these species demonstrated significant variation among females of all species. However, the ranges of ratios produced byY. cagnagellus, Y. irrorellus, andY. plumbellus, sharing the same host-plant species, spindle tree, did not overlap. Niche separation of all six species mentioned required consideration of at least one additional pheromone component or of temporal aspects. The remaining three species,i.e. Y. malinellus, Y. mahalebellus andY. rorellus, have pheromones that differ qualitatively.Biosynthetic routes to the pheromone components identified are proposed on the basis of fatty acid pheromone precursors found in the pheromone glands. A phylogenetic tree for the genus is constructed based on allozyme frequency data and changes in pheromone composition are superimposed on this tree. We suggest that the ancestral ermine moth pheromone is a mixture of (Z)-11- and (E)-11-tetradecenyl acetate and the corresponding alcohols, and a scenario of how present-day patterns evolved is outlined. The pheromone differences among the three species using spindle tree as their host-plant might have evolved throughreproductive character displacement upon secondary contact between populations that had already diverged genetically in allopatry. Pheromone differences within the so-calledpadellus-complex (includingY. cagnagellus, Y. mahalebellus, Y. malinellus, Y. padellus, andY. rorellus) in which species might have originated sympatrically, may have evolved byreinforcing selection as these species still hybridise and produce viable offspring when confined in cages. The role of pheromones in reproductive isolation amongYponomeuta species is emphasised by (1) the function of pheromone components of some of the species as behavioural antagonists to other species, (2) the cross-attraction under experimental conditions between allochronic species with similar pheromones, and (3) the formation of hybrids in the laboratory between species that are isolated in nature by pheromone differences.  相似文献   

17.
Summary. The basic chemical structure of the sex pheromone of the pine sawfly Microdiprion pallipes (Fallén) has earlier been identified as the propionate ester of (2S,3S,7R/S,11R/S)/(2R,3R,7R/S,11R/S)-3,7,11- trimethyl-2-tridecanol. We now report the results from further investigations on the male response to individual stereoisomers and to blends of stereoisomers, both in electroantennographic (EAG) recordings and in field trapping experiments. We also present our attempts to determine the stereochemistry of the compounds present in females of M. pallipes. By comparing gas chromatograms and mass spectra obtained from natural extracts with those from synthetic compounds it was found that the females contain one or more of the four (2S,3S,7R/S,11R/S)-3,7,11-trimethyl-2- tridecanol isomers (SS++-1). The active pheromone component is the corresponding propionate ester 2. In EAG experiments, males responded most strongly to five propionate ester samples, namely two four-isomer blends: SS++-2 and SR++-2, and three individual stereoisomers: SSSR-, SRRR- and SRSR-2. In a series of field trapping experiments it was found that males were attracted to the SR++-2 four-isomer blend and to the individual isomer SSSR-2. Based on the EAG-recordings and field responses of males and the stereoisomers found in the females, we suggest that the propionate ester of (2S,3S,7S,11R)-3,7,11-trimethyl-2- tridecanol (SSSR-2) is used as a main component of the sex pheromone in M. pallipes. Apparently the males react to other stereoisomers in addition to that or those produced by the females.  相似文献   

18.
The incidence of cannibalism of larval Spodoptera frugiperda (Lepidoptera: Noctuidae) on maize under field conditions was investigated using field cages. Cannibalism was found to account for approximately 40% mortality when maize plants were infested with two or four fourth-instar larvae over a 3-day period. Field trials examined the effect of larval density on the prevalence of natural enemies of S. frugiperda. The abundance of predators (earwigs, staphylinids, other predatory beetles, and Chrysoperla spp.) was significantly greater on maize plants with higher levels of larval feeding damage, while the relationship between predator abundance and number of S. frugiperda larvae per plant was less clear. As larval damage is probably a more reliable indicator of previous larval density than numbers collected at an evaluation, this indicates that predation risk will be greater for larvae living in large groups. Parasitism accounted for 7.1% mortality of larvae in sorghum, and involved six species of Hymenoptera and Tachinidae. There was no effect of larval density or within-plant distribution on the probability of larval attack by parasitoids. The selective benefits of cannibalism, in relation to the risk of predation and parasitism, are discussed. Received: 23 March 2000 / Accepted: 24 June 2000  相似文献   

19.
Plant volatile cues are considered the main source of information for ovipositing moths, which use chemical information to locate and recognize the host plant. In Europe, two sympatric populations of European corn borer (ECB; Ostrinia nubilalis, Hübner), the Z and E-pheromone races, feed mainly on maize and hop or mugwort, respectively. We studied the mechanisms of host-plant recognition and fidelity in ECB pheromone races by testing the attractiveness of host plants to gravid females in a flight tunnel and by analyzing the volatiles released from maize, mugwort, and hop during the scotophase, when the ovipositing flight of the ECB females occurs. In the wind tunnel bioassay, the Z-race and E-race females engaged in upwind flight and expressed a strong host fidelity to their respective main host plants; all three of these host plants possess distinctive volatile profiles specific as to blend and ratio. The host plants shared a certain number of ubiquitous volatiles present in various ratios that likely constitute a species-specific cue to host-seeking ECB moths. Our observations therefore suggest that ECB host fidelity is steered by plant volatiles that are present in species-specific ratios of ubiquitous volatile organic compounds.  相似文献   

20.
The plum moth, Illiberis rotundata Jordan (Lepidoptera: Zygaenidae: Procridinae), is a pest of orchards in Japan and China. Few chemical ecological studies have been directed towards the Zygaenidae and particularly the Procridinae. To investigate the sex pheromone of this species, extracts of pheromone glands from adult female I. rotundata were analyzed by coupled gas chromatography-electroantennography (GC-EAG) and coupled gas chromatography-mass spectrometry (GC-MS). Whilst GC-EAG on male moths showed an active peak, identified as 2-butyl (7Z)-dodecenoate, GC-MS also revealed the presence of the homologue 2-butyl (9Z)-tetradecenoate. Electroantennographic investigations, as well as field tests, strongly suggested the natural compounds to have the (R)-configuration at the stereogenic centre. Field results demonstrate 0.2 mg of a 1:1-mixture of (2R)-butyl (7Z)-dodecenoate and (2R)-butyl (9Z)-tetradecenoate to be a powerful lure that may be used in pest control measures against I. rotundata. The chemical structures of the new pheromone components show the same features as those of other zygaenid species: unsaturated fatty acids esterified with a short chain chiral alcohol. This is the first example of a two-component blend constituting the pheromone of a procridinid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号