首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“Waste molten slag” is a glass-like material produced by the vitrification of solid waste or solid waste incineration residue. When using slags of this kind in a natural environment, their impact is anticipated to be at the same level as competitive or substituted materials. In this study, we made comparative evaluations between waste molten slags and competitive materials, using 20 samples in total. It was proved that release fluxes of metals from molten slags of municipal solid waste were almost at the same level as competitive or substituted materials. However, a larger impact will be caused from some types of slag that contain harmful metals in high concentrations, such as the slag from shredded automobile residues. The results of release flux showed that nearly 80% of the slope of the flux did not fit with the diffusion range. However, the linearity of every flux was extremely high, regardless of the slope.  相似文献   

2.
Metallic phases in slags and their influence on the leaching characteristics were investigated. The proportions of metallic phase in four slags were 0.028%, 0.24%, 1.87%, and 3.05% by weight. The lead content was 10–248 mg/kg in bulk slag after metal removal, while in the metallic phase it was 579–7390 mg/kg. Lead concentrations in the metallic phase were more than ten times higher than in slags after metal removal. Lead was distributed in the metallic phase at 2.0%, 8.3%, 10.3%, and 47.4%. The concentrations of all metallic elements in metallic phases were much higher than in bulk slag. Iron, copper, and nickel had accumulated in magnetic metals, while aluminum and zinc were found in nonmagnetic metals. As regards chromium, manganese, lead, and tin, the proportion of metallic phases depended on the slag samples. By removing metallic phases, both water and pH 4 leachable lead decreased. The basic principles of melting residues containing lead are the separation of lead as a metal in reductive melting, and the containment of lead ions into uniform glassy particles in oxidization melting. Melting slag can be seen to contribute to environmental preservation by facilitating the recycling of materials through the separation of metals from melting slag. Received: February 21, 2000 / Accepted: July 27, 2000  相似文献   

3.
Integrated iron and steel plants generate large amounts of metallurgical slag, which usually contains some quantity of metals or mixtures of oxides that could be treated to be recycled in various applications. The conventional method for disposal of slags is dumping. However, it is possible to process the slags to be used in the production of metallic iron, or as an additive in cement making. In this study, a basic oxygen furnace (BOF) steelwork slag obtained from the Kardemir integrated iron and steel works, Karabuk, Turkey is used. A drum magnetic separator system with pre-engineered crucial processing parameters of drum revolution speed, drum radius, drum flesh thickness, and magnitude of the magnetic field applied is utilized, as these parameters have a competing influence on the results. Subsequently, the effects of slag grain size and the drum-blade gap are investigated in the separation efficiency of magnetic grains. It is found that collection of magnetic grains is improved by decreasing the grain size of slags and moreover, the collection of magnetic grains fraction is increased with an increase in the gap between the blades and drum.  相似文献   

4.
Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.  相似文献   

5.

In the process of lead production from lead-bearing materials generated in copper metallurgy, a large amount of hazardous waste in the form of slag is produced. To assess the effect of the slag on the environment, its physicochemical properties were determined. In this study, the following methods were used: wavelength dispersive X-ray fluorescence (WD XRF), X-ray diffraction (XRD), and Bunte-Baum-Reerink method to determine softening and melting points, as well as viscosity examination and leaching tests. The measurements were performed on the slag produced with two different amounts of iron addition to the lead smelting process. The resulting slags, an oxide rich phase slag and a sulfide rich phase slag have different compositions and physicochemical properties. It was found that the increase in iron addition causes an increase in the softening melting point of the oxide rich phase slag by about 100 °C, and a twofold increase in the viscosity of both slag phases. The increase in iron addition also results in the decrease in As leachability and increase in Zn, Fe, and Cu leachability from the slags. Slag produced with increased iron addition has a greater impact on the environment.

  相似文献   

6.
Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.  相似文献   

7.
Thermal treatment of refuse derived fuel (RDF) in waste-to-energy (WtE) plants is considered a promising solution to reduce waste volumes for disposal, while improving material and energy recovery from waste. Incineration is commonly applied for the energetic valorisation of RDF, although RDF gasification has also gained acceptance in recent years. In this study we focused on the environmental properties of bottom ash (BA) from an RDF incineration (RDF-I, operating temperature 850-1000 °C) and a RDF gasification plant (RDF-G, operating temperature 1200-1400 °C), by evaluating the total composition, mineralogy, buffering capacity, leaching behaviour (both at the material’s own pH and as a function of pH) of both types of slag. In addition, buffering capacity results and pH-dependence leaching concentrations of major components obtained for both types of BA were analysed by geochemical modelling. Experimental results showed that the total content of major components for the two types of BA was fairly similar and possibly related to the characteristics of the RDF feedstock. However, significant differences in the contents of trace metals and salts were observed for the two BA samples as a result of the different operating conditions (i.e. temperature) adopted by the two RDF thermal treatment plants. Mineralogy analysis showed in fact that the RDF-I slag consisted of an assemblage of several crystalline phases while the RDF-G slag was mainly made up by amorphous glassy phases. The leached concentrations of major components (e.g. Ca, Si) at the natural pH of each type of slag did not reflect their total contents as a result of the partial solubility of the minerals in which these components were chemically bound. In addition, comparison of total contents with leached concentrations of minor elements (e.g. Pb, Cu) showed no obvious relationship for the two types of BA. According to the compliance leaching test results, the RDF-G BA would meet the limits of the Italian legislation for reuse and the European acceptance criteria for inert waste landfilling. RDF-I BA instead would meet the European acceptance criteria for non hazardous waste landfilling. A new geochemical modelling approach was followed in order to predict the leaching behaviour of major components and the pH buffering capacity of the two types of slags on the basis of independent mineralogical information obtained by XRD analysis and the bulk composition of the slag. It was found that the combined use of data regarding the mineralogical characterization and the buffering capacity of the slag material can provide an independent estimate of both the identity and the amount of minerals that contribute to the leaching process. This new modelling approach suggests that only a limited amount of the mineral phases that control the pH, buffering capacity and major component leaching from the solid samples is available for leaching, at least on the time scale of the applied standard leaching tests. As such, the presented approach can contribute to gain insights for the identification of the types and amounts of minerals that control the leaching properties and pH buffering capacity of solid residues such as RDF incineration and gasification bottom ash.  相似文献   

8.
This work presents a method capable of melting the incinerator bottom ash and fly ash in a plasma furnace. The performance of slag and the strategies for recycling of bottom ash and fly ash are improved by adjusting chemical components of bottom ash and fly ash. Ashes are separated by a magnetic process to improve the performance of slag. Analytical results indicate that the air-cooled slag (ACS) and magnetic-separated slag (MSS) have hardness levels below 590 MPa, indicating fragility. Additionally, the hardness of crystallized slag (RTS) is between 655 and 686 MPa, indicating toughness. The leached concentrations of heavy metals for these three slags are all below the regulatory limits. ACS appears to have better chemical stability than MSS, and is not significantly different from RTS. In the potential alkali-silica reactivity of slag, MSS falls on the border between the harmless zone and the potentially harmful zone. ACS and RTS fall in the harmless zone. Hence, the magnetic separation procedure of ashes does not significantly improve the quality of slag. However, RTS appears to improve its quality.  相似文献   

9.
In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste.Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC – European Waste Catalogue – code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.  相似文献   

10.
Owing to the large amount of waste slags produced by zinc industry, it has become necessary to recycle it in some areas. Road construction has significant potential for the use of waste materials because more material is always needed. In this study, the engineering behaviour of asphalt concrete was investigated using mineral aggregates with waste slag, which is a by-product of the zinc–lead production industry. The asphalt concrete tested in this study was fabricated using 25, 50, 75 and 100 % mixing ratios instead of the conventional fine mineral aggregate (11, 22, 33 and 44 % rate of total aggregate mixture) to determine the possibility of using slags in the binder course of bituminous hot mixtures. The asphalt concretes, made of waste slags and conventional asphalt concrete, were evaluated in terms of their fundamental engineering properties such as Marshall stability, flow, Marshall quotient (MQ), bulk specific gravity, air voids and voids filled with bitumen in the total mix characteristics. The results indicate that the addition of waste slag as mineral aggregate improves the engineering characteristic performance and that it can be used in bituminous hot mixtures. In addition, principal component analyses were applied to examine the significance of each Marshall parameter, and a regression model was developed to estimate the MQ value using effective parameters.  相似文献   

11.

Waste treatment using thermal technologies, such as incineration, leads to the production of pollutants and wastes, including fly ash (FA). Fly ash contains heavy metals (HMs) and other contaminants and can potentially pose high risks to the environment and negatively impact health and safety. Consequently, stabilizing fly ash prior to either use or landfilling is crucial. The toxicity of fly ash through heavy metal leaching can be assessed using leaching tests. The leaching rates of heavy metals primarily depend on the surrounding conditions as well as fly ash properties and metal speciation. Physical separation, leaching or extraction, thermal treatment and solidification/chemical stabilization are proposed as suitable approaches for fly ash treatment. Economic considerations, environmental concerns, energy consumption and processing times can define the efficiency and selection of the treatment approach. This review considers the latest findings and compares the advantages and shortcomings of different fly ash treatment methods with the aim of highlighting the recent advances in the field. The review concludes that the simultaneous implementation of various methods can lead to highly efficient heavy metals removal/stabilization while simultaneously taking economic and environmental considerations into account.

  相似文献   

12.
概述了二恶英、重金属、酸性气体、灰渣等垃圾焚烧的主要污染物,以二段式(往复)焚烧炉为例,介绍了炉排炉焚烧处理工艺和污染控制设备。提出通过控制垃圾焚烧条件、尾气处理以及吸附等方法,可以有效控制二恶英类污染物的排放;重金属的控制可以用除尘器或使用相应的吸附剂处理;采用较为成熟的烟气处理技术,可以控制处理酸性气体;灰渣可采用固化稳定化或酸提取法处置。  相似文献   

13.
Municipal solid waste incineration (MSWI) bottom ash contains economically significant levels of silver and gold. Bottom ashes from incinerators at Amsterdam and Ludwigshafen were sampled, processed, and analyzed to determine the composition, size, and mass distribution of the precious metals. In order to establish accurate statistics of the gold particles, a sample of heavy non-ferrous metals produced from 15 tons of wet processed Amsterdam ash was analyzed by a new technology called magnetic density separation (MDS). Amsterdam’s bottom ash contains approximately 10 ppm of silver and 0.4 ppm of gold, which was found in particulate form in all size fractions below 20 mm. The sample from Ludwigshafen was too small to give accurate values on the gold content, but the silver content was found to be identical to the value measured for the Amsterdam ash. Precious metal value in particles smaller than 2 mm seems to derive mainly from waste of electrical and electronic equipment (WEEE), whereas larger precious metal particles are from jewelry and constitute the major part of the economic value. Economical analysis shows that separation of precious metals from the ash may be viable with the presently high prices of non-ferrous metals. In order to recover the precious metals, bottom ash must first be classified into different size fractions. Then, the heavy non-ferrous (HNF) metals should be concentrated by physical separation (eddy current separation, density separation, etc.). Finally, MDS can separate gold from the other HNF metals (copper, zinc). Gold-enriched concentrates can be sold to the precious metal smelter and the copper-zinc fraction to a brass or copper smelter.  相似文献   

14.
During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.  相似文献   

15.
Management of municipal solid waste incineration residues   总被引:12,自引:0,他引:12  
The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions.  相似文献   

16.
Hazardous waste incineration (HWI) in rotary kilns and the disposal of the residual slag on landfills play an important role in German waste treatment. In order to save disposal costs the elution behaviour of HWI-slag should be further optimised. Quality-improved slag may be disposed off on cheaper landfill sites still applying to landfill regulations. In a new process-integrated approach hazardous waste is mixed with limestone, which initiates chemical reactions with heavy metals in the rotary kiln yielding new compounds of different solubility. In this work HWI-slag/limestone mixtures are thermally treated and then examined by elution tests. Experimental data indicate that the heavy metals pertinent to landfill class assignment of a HWI-slag share a solubility minimum at a CaO-content of about 15%. Such improved HWI-slags are allowed to be disposed off on cheaper landfill sites. Furthermore, a new combination of thermodynamic calculation methods is applied to predict heavy metal solubility for different process conditions. Used models hold the opportunity to explain the tendencies of heavy metal leaching and propose plausible chemical reactions. With it, a new tool to examine the impact of temperature treatment and slag composition on heavy metal elution from HWI-slag is presented.  相似文献   

17.
Products of steel slags an opportunity to save natural resources   总被引:20,自引:0,他引:20  
In Germany, and in the most industrial countries, the use of blast furnace and steel slags as an aggregate for civil engineering, for metallurgical use and as fertiliser has a very long tradition. Since the introduction of the basic oxygen steel making furnace (BOF) process and the electric arc furnace (EAF) process the German steel industry started extensive research on the development of fields of application for BOF and EAF slags. These investigations have been mainly performed by Forschungsgemeinschaft Eisenhüttenschlacken e. V. (FEhS), the Research Association for blast furnace and steel slags. Today steel slags are well characterised and long-term experienced materials mainly used as aggregates for road construction (e.g. asphaltic or unbound layers), as armour-stones for hydraulic engineering constructions (e.g. stabilisation of shores), and as fertiliser for agriculture purposes. These multifarious fields of application could only be achieved because the steelworks influence the quality of slags by a careful selection of raw materials and a suitable process route. Furthermore, subsequent procedures like a treatment of the liquid slag, an appropriate heat treatment and a suitable processing have been developed to ensure that the quality of steel slags is always adequate for the end use. Depending on the respective field of application, the suitability of steel slags has to be proven by determining the technical properties, as well as the environmental compatibility. For this reason test methods have been developed to evaluate the technical properties especially the volume stability and the environmental behaviour. To evaluate the volume stability a suitable test (steam test) has been developed and the results from laboratory tests were compared with the behaviour of steel slags under practical conditions, e.g. in a road. To determine the environmental behaviour leaching tests have been developed. In the meanwhile most of these test methods are drafted or already accepted as a CEN standard and are used for a continuous quality control. Usually the suitability of steel slags is stated by fulfilling the requirements of national and/or international standards and regulations. Based on these standards and regulations in Germany in 1998 about 97% of the produced steel slags have been used as aggregates for road construction (e.g. as surface layer, road base and sub base for high trafficked roads), ways, earthworks, and armourstones for hydraulic structures. Consistent to the successful long-term experience not only products of steel slags but also products of blast furnace slags have been eliminated from the European Waste Catalogue and the European Shipment of Waste Regulation of the European Community, as well as from the lists of OECD for transfrontier movements by the decision of the OECD-Council from 21 September, 1995.  相似文献   

18.
The pressing need to reduce the consumption of non-renewable resources and the emission of greenhouse gases into the environment, in recent decades has led to the wide development of bio-based plastics that are produced from renewable sources, such as corn, wheat, oil seeds etc. Actually, the most important bio-based plastics on the market are the poly(lactic acid) (PLA) produced from Nature Works (USA) and the Mater-Bi, a starch based bioplastics, made from Novamont (Italy). The aim of this work is not only to assess the actual energy and greenhouse gases (GHGs) savings resulting from the production of bioplastics, compared with the production of conventional plastics, but also to analyze what might be the best final disposition of bioplastic wastes in order to maximize the energy saving. Therefore, by using the Life Cycle Assessment (LCA) methodology, LCAs cradle to gate and cradle to grave were carried out both for PLA and Mater-Bi, taking into consideration as final scenarios composting, incineration, anaerobic digestion and mechanical recycling processes. The work demonstrates how incineration, composting and anaerobic digestion processes are clearly under-performing, from an environmental point of view, with respect to the mechanical recycling process.  相似文献   

19.
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.  相似文献   

20.
One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号