共查询到14条相似文献,搜索用时 62 毫秒
1.
探究了超声前处理活性艳红X-3B染料废水强化活性炭吸附降解性能及不同超声参数的影响规律,包括超声功率和超声时间。研究结果表明,超声前处理活性艳红X-3B染料废水可通过空化效应使有机大分子裂解为小分子易于被活性炭吸附,同时可强化其到活性炭微孔中传输,提高了活性炭吸附降解性能,最佳超声功率为320 W。浓度越高,所需超声时间越长,当超声达到一定时间后,继续超声不会影响染料分子的吸附。超声前处理虽然不会改变吸附平衡时间,但可有效增加活性炭处理活性艳红X-3B染料废水的饱和吸附量。 相似文献
2.
实验将一种新型光源--无极紫外灯,应用于染料废水的降解,考察了反应过程中,染料脱色率、TOC去除率、pH值以及反应前后高效液相色谱图谱的变化情况.实验表明,染料活性艳红X-3B经过无极紫外光处理110 min后,脱色率达96%,TOC去除率达66%,而pH值则是先降低后缓慢升高. 相似文献
3.
研究了低强度紫外线对活性艳红X 3B溶液的处理效果 ,考察了紫外线波长、溶液pH、起始浓度、催化剂用量、温度及曝气条件对染料降解的影响。结果表明 ,36 5nm紫外线 (UV3 65nm)的处理效果明显优于 2 5 4nm紫外线 (UV2 54nm) ,反应最适pH为 3 0~ 5 0 ,最佳TiO2 投加量为 2 0g/L ,最适温度为 4 0℃ ,通入空气或氧气均能加速活性艳红X 3B的降解。在上述条件下 ,起始浓度为 5 0mg/L的活性艳红X 3B在 1 5 0min内可完全分解 相似文献
4.
5.
以硫脲为硫的源物质,以钛酸四丁酯为TiO2的前驱体,采用溶胶-凝胶法制备了掺硫改性TiO2光催化剂。以活性艳红X-3B为目标污染物,研究了该催化剂的光催化降解性能,对硫掺杂量、催化剂焙烧温度、溶液pH值以及催化剂添加量等影响因素进行了研究,并采用XRD分析手法对光催化剂进行表征。结果表明,经掺硫改性后的TiO2的催化活性有了很大提高,且硫的掺杂有一个最佳值,即Ti∶S的摩尔比为1∶1。经掺硫改性的TiO2在可见光区具备一定的催化活性, 180 min内对活性艳红X-3B的去除率可达35.1%,且在紫外光区的催化活性优于纯TiO2。 相似文献
6.
采用海藻酸钠对光合细菌进行包埋,并在固定化过程中加入壳聚糖,研究添加了壳聚糖的固定化细胞在不同条件下对活性艳红X-3B的脱色效果及其降解动力学.实验结果表明,在厌氧条件下,X-3B的脱色效果较好;染料浓度在30~300 mg/L之间变化时,厌氧降解动力学方程均符合一级动力学方程;降解速率与染料初始浓度之间关系符合Michaelis-Menten方程,反应动力学参数Km=374.96 mg/L,Vmax=7.53 mg/L·h.振荡有利于脱色并使半衰期缩短;固定化小球可重复使用. 相似文献
7.
采用间歇式摇床试验,研究了葡萄糖共基质条件下Fe^0-厌氧微生物体系中Fe^0投加量、pH值、染料初始浓度对活性艳红X-3B模拟废水脱色率的影响,比较了Fe^0-厌氧微生物、纯厌氧微生物及纯Fe^0 3种体系中废水的脱色效果。结果表明:Fe^0-厌氧微生物体系中初始浓度(50~500mg/L)对活性艳红X-3B的脱色率影响不大;而Fe^0投加量、pH值存在一个最佳范围;当Fe^0投加量为260mg/L,pH值为6.0,污泥浓度为0.35gVSS/L,停留时间约为30h时,体系中活性艳红X-3B的脱色率可达90%左右,比相同试验条件下纯Fe^0、纯厌氧微生物体系达到此脱色率所需时间分别缩短了约1/2、7/10。在Fe^0-厌氧微生物体系中,由紫外可见分光光度分析可推测活性艳红X-3B的脱色机理主要是其偶氮键发生断裂,生成苯胺和萘类物质,而且苯胺和萘类物质能得到进一步降解。 相似文献
8.
利用活性炭吸附法及基于SO4-·的高级氧化技术,以活性炭和过渡金属氧化物CuO为催化剂,催化过硫酸盐产生SO4-·降解活性艳红X-3B染料。结果表明,活性炭负载CuO催化过硫酸盐可有效去除活性艳红X-3B,色度去除率达90%以上,显著优于活性炭(21.53%)、过硫酸盐(46.88%)、活性炭催化过硫酸盐(53.67%)(P<0.05)。活性艳红X-3B的催化降解效果受CuO负载量、pH、过硫酸盐投加量、温度的影响。单因素法研究表明,各因素最佳条件为:负载量活性炭与CuO质量比为1:5,投加量0.2 g,pH为3,过硫酸钠投加量0.2 g,反应温度40℃,活性艳红X-3B的色度去除率分别达到91.34%、95.57%、98.54%和98.81%,COD去除率分别为82.73%、88.89%、87.60%和93.46%。 相似文献
9.
低强度紫外线催化降解活性艳红X-3B溶液研究 总被引:4,自引:0,他引:4
研究了低强度紫外线对活性艳红X-3B溶液的处理效果.考察了紫外线波长、溶液pH、起始浓度、催化剂用量、温度及曝气条件对染料降解的影响。结果表明,365nm紫外线(UV356nm)的处理效果明显优于254nm紫外线(UV254nm),反应最适pH为3.0~5.0,最佳TiO2投加量为2.0g/L,最适温度为40℃,通入空气或氧气均能加速活性艳红X-3B的降解。在上述条件下,起始浓度为50mg/L的活性艳红X-3B在150min内可完全分解。 相似文献
10.
废椰壳制备活性炭负载CuO处理活性艳红X-3B废水的工艺优化 总被引:1,自引:0,他引:1
为了综合利用废椰壳,进行了废椰壳制备活性炭并负载氧化铜处理活性艳红X-3B废水的研究。采用正交实验法,以COD和色度去除率为目标函数确定了活性炭的最佳制备工艺条件为:磷酸浓度65%(质量百分数),m(磷酸)/m(椰壳)比3∶1,活化时间2.5 h,活化温度500℃。在该活性炭上负载氧化铜处理活性艳红X-3B染料废水,其COD和色度去除率分别为83.70%和99.72%。用扫描电镜(SEM)和X衍射仪(XRD)对裸活性炭和载铜活性炭样品表面形貌和结构进行了表征和分析。通过单因素实验法确定了废水处理的最佳工艺条件为:pH值5,曝气时间4 h和催化剂用量0.55 g,在此条件下,COD和色度去除率分别为86.70%和99.75%,相应的出水指标为75 mg/L和32稀释倍数。 相似文献
11.
氧化亚铜光催化降解活性艳红的研究 总被引:1,自引:0,他引:1
制备了纳米SiO2-Cu2O复合氧化物,并对其进行表征。研究了SiO2-Cu2O在可见光照射下光催化降解活性艳红X-3B的性能。考察了催化剂组成、活性艳红浓度、催化剂用量、H2O2等对光催化反应的影响,还研究了Cu2O光催化反应动力学。结果表明,用SiO2摩尔含量为2%的SiO2-Cu2O光催化降解活性艳红,反应4 h,活性艳红降解率达到85%,降解反应为一级反应。 相似文献
12.
Fe0-厌氧微生物体系处理活性艳红X-3B的试验研究 总被引:1,自引:0,他引:1
采用间歇式摇床试验,研究了葡萄糖共基质条件下Fe0-厌氧微生物体系中Fe0投加量、pH值、染料初始浓度对活性艳红X-3B模拟废水脱色率的影响,比较了Fe0-厌氧微生物、纯厌氧微生物及纯Fe03种体系中废水的脱色效果.结果表明:Fe0-厌氧微生物体系中初始浓度(50~500 mg/L)对活性艳红X-3B的脱色率影响不大;而Fe0投加量、pH值存在一个最佳范围;当Fe0投加量为260 mg/L,pH值为6.0,污泥浓度为0.35 g VSS/L,停留时间约为30 h时,体系中活性艳红X-3B的脱色率可达90%左右,比相同试验条件下纯Fe0、纯厌氧微生物体系达到此脱色率所需时间分别缩短了约1/2、7/10.在Fe0-厌氧微生物体系中,由紫外可见分光光度分析可推测活性艳红X-3B的脱色机理主要是其偶氮键发生断裂,生成苯胺和萘类物质,而且苯胺和萘类物质能得到进一步降解. 相似文献
13.
14.
水溶液中活性艳红KE-3B的臭氧超声联合脱除 总被引:2,自引:1,他引:2
采用臭氧/超声联合技术去除模拟废水中的活性艳红KE-3B。臭氧/超声处理前后KE-3B的紫外可见吸收谱没有明显的变化。臭氧/超声联合作用、单独臭氧化和单独超声处理脱除活性艳红KE-3B模拟废水5 min后的去除率分别为97%、73%和5%,表明臭氧/超声联合降解活性染料具有更高的氧化速率。实验研究了pH值、臭氧投加量、超声能量密度、反应温度对超声/臭氧降解活性艳红KE-3B反应速率的影响,在实验研究范围内,随着溶液初始pH的增大,KE-3B的去除率先增大后减小,超声能量密度的改变对KE-3B的去除影响不大,温度升高有利于氧化反应的进行。在溶液初始pH值为9.0,臭氧投加量3.2 g/h,超声能量密度176 W/L,反应温度20℃时,浓度为100 mg/L的活性艳红KE-3B溶液的去除率最高。 相似文献