首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3 >> NO2 > H2O > NO > O2 > CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.  相似文献   

2.
Binary oxide systems(Cu Cr2O4, Cu Co2O4), deposited onto cordierite monoliths of honeycomb structure with a second support(finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine’s gas exhausts(O2, NOx, H2 O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3 NO2> H2 O > NO > O2> CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively(in the presence of copper chromite based catalyst) even at closing to ambient temperatures.Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.  相似文献   

3.
Compressed natural gas(CNG)is most appropriate an alternative of conventional fuel for automobiles.However,emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment.Consequently,to abate emissions from CNG vehicles,development of highly efficient and inexpensive catalysts is necessary.Thus,the present work attempts to scan the effects of precipitants(Na_2CO_3,KOH and urea)for nickel cobaltite(Ni Co_2O_4)catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C.The catalysts were used for oxidation of a mixture of CO and CH_4(1:1).The catalysts were characterized by X-ray diffractometer,Brunauer–Emmett–Teller surface-area,X-ray photoelectron spectroscopy;temperature programmedreductionandScanningelectronmicroscopycoupledwith Energy-Dispersive X-Ray Spectroscopy.The Na_2CO_3was adjudged as the best precipitant for production of catalyst,which completely oxidized CO-CH_4mixture at the lowest temperature(T_(100)=350°C).Whereas,for catalyst prepared using urea,T_(100)=362°C.On the other hand the conversion of CO-CH_4mixture over the catalyst synthesized by KOH limited to 97%even beyond 400°C.Further,the effect of higher calcination temperatures of 500 and600°C was examined for the best catalyst.The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively.Thus,the best precipitant established was Na_2CO_3and the optimum calcination temperature of 400°C was found to synthesize the Ni Co_2O_4catalyst for the best performance in CO-CH_4oxidation.  相似文献   

4.
Ni/Fe-Fe_3O_4 nanocomposites were synthesized for dechlorination of 2,4-dichlorophenol(2,4-DCP). The effects of the Ni content in Ni/Fe-Fe_3O_4 nanocomposites, solution pH, and common dissolved ions on the dechlorination efficiency were investigated, in addition to the reusability of the nanocomposites. The results showed that increasing content of Ni in Ni/Fe–Fe_3O_4 nanocomposites, from 1 to 5 wt.%, greatly increased the dechlorination efficiency; the Ni/Fe–Fe_3O_4 nanocomposites had much higher dechlorination efficiency than bare Ni/Fe nanoparticles. Ni content of 5 wt.% and initial p H below 6.0 was found to be the optimal conditions for the catalytic dechlorination of 2,4-DCP. Both 2,4-DCP and the intermediate product 2-chlorophenol(2-CP) were completely removed, and the concentration of the final product phenol was close to the theoretical phenol production from complete dechlorination of 20 mg/L of 2,4-DCP, after 3 hr reaction at initial p H value of 6.0,3 g/L Ni/Fe-Fe_3O_4 , 5 wt.% Ni content in the composite, and temperature of 22℃. 2,4-DCP dechlorination was enhanced by Cl-and inhibited by NO3-and SO_4~(2-). The nanocomposites were easily separated from the solution by an applied magnetic field. When the catalyst was reused, the removal efficiency of 2,4-DCP was almost 100% for the first seven uses, and gradually decreased to 75% in cycles 8–10. Therefore, the Ni/Fe–Fe_3O_4 nanocomposites can be considered as a potentially effective tool for remediation of pollution by 2,4-DCP.  相似文献   

5.
Wet scrubbing combined with ozone oxidation has become a promising technology for simultaneous removal of SO2 and NOx in exhaust gas. In this paper, a new 20-species, 76-step detailed kinetic mechanism was proposed between O3 and NOx. The concentration of N2O5 was measured using an in-situ IR spectrometer. The numerical evaluation results kept good pace with both the public experiment results and our experiment results. Key reaction parameters for the generation of NO2 and N2O5 during the NO ozonation process were investigated by a numerical simulation method. The effect of temperature on producing NO2 was found to be negligible. To produce NO2, the optimal residence time was 1.25 sec and the molar ratio of O3/NO about 1. For the generation of N2O5, the residence time should be about 8 sec while the temperature of the exhaust gas should be strictly controlled and the molar ratio of O3/NO about 1.75. This study provided detailed investigations on the reaction parameters of ozonation of NOx by a numerical simulation method, and the results obtained should be helpful for the design and optimization of ozone oxidation combined with the wet flue gas desulfurization methods (WFGD) method for the removal of NOx.  相似文献   

6.
ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a = b = 11.176479 Å and c = 10.014323 Å. The band gap of ZnBiYO4 was estimated to be 1.58 eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min− 1 for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO42 − and NO3, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography–mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.  相似文献   

7.
A series of CeO_2–ZrO_2–WO_3(CZW)catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction(SCR)of NO with NH_3 over a wide temperature of 150–550°C.The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H_2O.The fresh catalyst showed above 90% NO_x conversion at 201–459°C,which is applicable to diesel exhaust NO_x purification(200–440°C).The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures(below 300°C),while the activity was notably enhanced at high temperature(above 450°C).The aged CZW catalyst(hydrothermal aging at 700°C for 8 hr)showed almost 80% NO_x conversion at 229–550°C,while the V_2O_5–WO_3/TiO_2 catalyst presented above 80% NO_x conversion at 308–370°C.The effect of structural changes,acidity,and redox properties of CZW on the SCR activity was investigated.The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO_2–ZrO_2 solid solution,amorphous WO_3 phase and optimal acidity.In addition,the formation of WO_3 clusters increased in size as the hydrothermal aging temperature increased,resulting in the collapse of structure,which could further affect the acidity and redox properties.  相似文献   

8.
富氧条件下SnO2/Al2O3催化剂上丙烯选择性还原NOx的研究   总被引:2,自引:2,他引:2  
考察了分别用浸渍法、共沉淀法和溶胶-凝胶法制备的SnO2/Al2O3催化剂上丙烯选择性还原NOx的催化活性,发现制备方法与Sn的负载量对其活性有重要影响.溶胶-凝胶法制备的SnO2/Al2O3催化剂活性最高,Sn的最佳负载量为5%.与浸渍法和共沉淀法制备的5%SnO2/Al2O3催化剂相比,溶胶-凝胶法制备的5%SnO2/Al2O3催化剂受水蒸汽的抑制作用较弱,并且在水和SO2共存的条件下活性最高.此外,反应气中丙烯及氧气浓度的增加有利于NOx转化率的提高.  相似文献   

9.
为研究高浓度CO2在高温高压情况下对柴油燃烧特性的影响,提出了柴油表征燃料在CO2/O2氛围下的燃烧反应机理.通过量子化学计算了化学反应路径并对反应路径进行分析,最后进行柴油表征燃料燃烧的仿真.通过搭建定容燃烧弹试验台架和可视化系统进行试验与仿真分析,结果表明:在50% CO2+50% O2氛围下,对仿真与实验的火焰燃烧极限长度和火焰纵截面面积进行对比,最小误差分别为0.39%和0.64%,最大误差分别为8.54%和4.94%,说明此机理适用于高浓度CO2氛围下柴油燃烧特性的研究;CO2的化学效应在柴油表征燃料燃烧时具有促进作用,CO2在2600 K时发生热解,热解产物CO与H自由基等发生反应可以生成着火促进剂·OH;柴油在50% CO2+50% O2、43% CO2+57% O2和35% CO2+65% O2氛围下的燃烧效率比空气氛围分别提高了28.2%、30.4%和33.3%.  相似文献   

10.
In this paper, factors influencing the mineralization of dimethyl phthalate (DMP) during catalytic ozonation with a cerium-doped Ru/Al2O3 catalyst were studied. The catalytic contribution was calculated through the results of a comparison experiment. It showed that doping cerium significantly enhanced catalytic activity. The total organic carbon (TOC) removal over the doped catalyst at 100 min reached 75.1%, 61.3% using Ru/Al2O3 catalyst and only 14.0% using ozone alone. Catalytic activity reached the maximum when 0.2% of ruthenium and 1.0% of cerium were simultaneously loaded onto Al2O3 support. Results of experiments on oxidation by ozone alone, adsorption of the catalyst, Ce ion’s and heterogeneous catalytic ozonation confirmed that the contribution of heterogeneous catalytic ozonation was about 50%, which showed the obvious effect of Ru-Ce/Al2O3 on catalytic activity. __________ Translated from China Environmental Science, 2006, 26(4): 445–448 [译自: 中国环境科学]  相似文献   

11.
Activity and stability of 1%Pd-0.2%Pt/Al2O3 and 1%Pd-0.2%Pt/0.6%Ce/Al2O3 catalysts prepared by impregnation method for catalytic combustion of methane in air were investigated. The catalysts before and after reaction were characterized by BET, CO chemisorption, XRD and XPS techniques. Results showed that the presence of Ce significantly increased the activity and thermal stability of the Pd-Pt/Al2O3 catalyst towards methane combustion, which could be attributed to more highly-dispersed active PdO particles over the Pd-Pt/Ce/Al2O3 catalyst surface as well as the retarded sintering of PdO and the maintained oxidized state of surface Pd during the combustion process in the presence of Ce.  相似文献   

12.
孙正男  杨琦  纪冬丽  郑琳 《环境科学》2015,36(6):2154-2160
以浸渍法制备的新型纳米Fe3O4/Ce O2为催化剂,3,4-二氯三氟甲苯(3,4-DCBTE)为目标污染物,在Fe3O4/Ce O2-H2O2非均相类Fenton体系中对目标污染物的降解进行研究,考察催化剂的催化效果和温度、p H、H2O2投加量等因素对催化剂催化效果的影响.结果表明,以纳米Fe3O4/Ce O2作为催化剂的非均相类Fenton体系对3,4-二氯三氟甲苯的处理效果极佳;随着温度的升高,纳米Fe3O4/Ce O2的催化效果不断提高;在偏酸性环境中,p H越低催化效果越好,p H=2时反应去除效率可达96.67%;随着H2O2投加量的增加,3,4-二氯三氟甲苯的降解效率先提高后降低,投加量为15 mg·L-1时去除效果最好可达99.47%;随着催化剂投加量的增加,同样出现了处理效果先升高后降低的现象,投加量为0.5 g·L-1时催化效果最好可达99.64%.在以纳米Fe3O4/Ce O2为催化剂的非均相类Fenton体系中,3,4-二氯三氟甲苯的降解符合一级反应动力学,反应所需活化能较低只需30.26 k J·mol-1.  相似文献   

13.
采用水热合成法成功制备出MnFe2O4磁性纳米棒(s-MnFe2O4),并考察了商品化的Fe3O4、MnFe2O4和合成的s-MnFe2O4纳米棒这3种磁性纳米颗粒作为非均相Fenton催化剂降解水中四环素抗生素的性能.同时,采用X射线衍射(XRD)、透射电镜(TEM)、N2吸附-脱附、振动样品磁强计(VSM)及X射线光电子能谱(XPS)等技术对催化剂的理化性质进行了表征.非均相Fenton催化降解四环素的结果表明,s-MnFe2O4具有最高的催化活性,反应180 min,四环素的去除率可以达到87.6%,TOC的去除率达到47.5%.自由基捕获试验证实了羟基自由基(·OH)是非均相Fenton氧化过程中的主要活性物种.s-MnFe2O4磁性纳米棒的高催化活性归...  相似文献   

14.
三维有序介孔Co3O4非均相活化单过硫酸氢钾降解罗丹明B   总被引:1,自引:1,他引:0  
以多孔硅KIT-6为模板,采用纳米浇筑法制备三维有序介孔Co_3O_4,利用比表面积测试仪(BET)、高倍投射电子显微镜(H-TEM)、X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)等方法进行表征,并首次将其应用于催化单过硫酸盐降解罗丹明B.结果表明,三维有序介孔Co_3O_4具有丰富的空间介孔结构和巨大的比表面积,对单过硫酸盐的催化活性远强于传统纳米级Co_3O_4.较高的催化剂投加量和较高的单过硫酸盐浓度有利于罗丹明B的脱色.在反应体系中出现Cl-和H2PO-4能够加速罗丹明B的脱色,而出现NO_3~-、SO_4~(2-)和HCO_3~-则会抑制罗丹明B的去除.通过自由基鉴定实验发现,硫酸自由基是导致罗丹明B脱色的主导活性自由基.三维有序介孔Co_3O_4经过多次重复使用后仍表现出良好的催化活性.  相似文献   

15.
利用四电极电化学传感器开展大气NO2和O3监测研究.为解决温度和湿度对传感器响应的影响问题,提出了一种具有温湿度补偿与零点校正功能的大气NO2和O3测量结果校准模型,通过活性炭吸附特性获得干净的背景气体,实现传感器准确的零点校正,并利用实验系统实测数据结合多元线性回归方法获得校准模型参数.首先对传感器线性响应特性进行了测试,发现O2和O3的测量灵敏度分别为3.889 ppbv·mV-1和4.107 ppbv·mV-1.同时,在合肥西郊科学岛开展了为期2 d的大气NO2和O3连续观测,发现两者的浓度分别为0~30 ppbv和2~100 ppbv.最后将传感器观测结果与NOx/O3分析仪测量结果进行了回归分析,发现两者测得的NO2线性拟合斜率为0.9701±0.0182,R2为0.8378,测得的O3线性拟合斜率为0.9850±0.0101,R2为0.9431.研究表明,校准后的电化学传感器可用于大气NO2和O3的长期监测,可为推动大气环境监测技术发展提供新的思路.  相似文献   

16.
A highly effective Ag-Al2O3 catalyst was prepared using the in-situ sol-gel method, and characterized by surface area using nitrogen adsorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The catalyst performance was tested on a real lean-burn gasoline engine. Only unburned hydrocarbons and carbon monoxide in the exhaust were directly used as reductant (without any external reductant), the maximum NO x conversion could only reach 40% at 450°C. When an external reductant, ethanol was added, the average NO x conversion was greater than 60%. At exhaust gas temperature range of 350–500°C, the maximum NO x conversion reached about 90%. CO and HC could be efficiently oxidized with Pt-Al2O3 oxidation catalyst placed at the end of SCR converter. However, NO x conversion drastically decreased because of the oxidation of some intermediates to NO x again. The possible reaction mechanism was proposed as two typical processes, nitration, and reduction in HC-SCR over Ag-Al2O3.  相似文献   

17.
Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFeaO40C was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn304 or Fe203, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe304 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.  相似文献   

18.
Pt supported on mesoporous silica SBA-15 was investigated as a catalyst for low temperature selective catalytic reduction(SCR) of NO by C 3 H 6 in the presence of excess oxygen.The prepared catalysts were characterized by means of XRD,BET surface area,TEM,NO-TPD,NO/C 3 H 6-TPO,NH 3-TPD,XPS and 27 Al MAS NMR.The effects of Pt loading amount,O 2 /C 3 H 6 concentration,and incorporation of Al into SBA-15 have been studied.It was found that the removal efficiency increased significantly after Pt loading,but an optimal loading amount was observed.In particular,under an atmosphere of 150 ppm NO,150 ppm C 3 H 6,and 18 vol.% O 2,0.5% Pt/SBA-15 showed remarkably high catalytic performance giving 80.1% NOx reduction and 87.04% C 3 H 6 conversion simultaneously at 140°C.The enhanced SCR activity of Pt/SBA-15 is associated with its outstanding oxidation activities of NO to NO 2 and C 3 H 6 to CO 2 in low temperature range.The research results also suggested that higher concentration of O 2 and higher concentration of C 3 H 6 favored NO removal.The incorporation of Al into SBA-15 improved catalytic performance,which could be ascribed to the enhancement of catalyst surface acidity caused by tetrahedrally coordinated AlO 4.Moreover,the catalysts could be easily reused and possessed good stability.  相似文献   

19.
氮氧化物(NOx)是造成细颗粒物、近地面臭氧等大气污染问题的重要前体物.随着大气污染治理行动的深入,对工业锅炉/窑炉烟气排放的NOx进行控制十分重要.采用不同方法制备了一系列Co_3O_4催化剂,考察了不同制备方法对CO选择性催化还原NO(CO-SCR)反应活性的影响,通过BET、XRD、Raman、HR-TEM和SEM等技术对该系列催化剂进行了表征.活性测试表明,以硫酸钴为前驱体用固态研磨法制备的Co_3O_4-S催化剂具有更优异的CO-SCR反应活性,且表现出较好的抗水蒸气性能,以醋酸钴为前驱体用固态研磨法制备的Co_3O_4-C催化剂显示出较好的抗水性能. NO氧化结果显示,催化剂的NO氧化效果越好,CO-SCR活性也越好. Raman表征结果显示,Co_3O_4-S表面可能含有更多的Co2+离子,从而有利于形成氧空位. H2-TPR结果表明,Co_3O_4-S催化剂的氧化还原性较好. HR-TEM表征发现Co_3O_4-S和Co_3O_4-O主要暴露(111)和(220)晶面,而更多(220)晶面的暴露可能更有利于反应的进行.  相似文献   

20.
以镁铁尖晶石MgFe2O4为磁核,在磁核表层包覆MgAl水滑石后经高温焙烧形成MgAl (O)复合氧化物包覆的磁性载体MgFe2O4/MgAl (O),进而负载纳米金属Pd制成磁性催化剂Pd-MgFe2O4/MgAl (O).通过X射线衍射(XRD)、X射线光电子能谱分析(XPS)、傅里叶红外光谱(FT-IR)、透射电镜(TEM)、扫描电子显微镜(SEM)、选区电子衍射(SAED)、比表面积(SBET)和振动样品磁强计(VSM)等手段对催化材料进行表征.结果表明,MgFe2O4-LDH转化为磁性MgFe2O4/MgAl (O)载体有利于催化材料比表面积的增加、结构稳定性的提升及相应催化活性位点的增加,进而有利于提升4-氯苯酚高效加氢脱氯效率.研究进一步考察了催化剂负载量、催化剂用量、底物浓度、反应温度、反应溶剂等条件对4-氯苯酚降解效率的影响.结果发现,在优化反应条件下催化反应的转换频率TOF (0.04 s-1)可媲美常温、常压、无碱性添加剂等温和条件下4-氯苯酚高效加氢脱氯反应的最佳文献报道水平.磁性催化剂Pd-MgFe2O4/MgAl (O)循环使用4次后仍保持很好的催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号