共查询到20条相似文献,搜索用时 0 毫秒
1.
To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes. 相似文献
2.
Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). 相似文献
3.
Daegi Kim Kwanyong Lee Daeun Bae Ki Young Park 《Journal of Material Cycles and Waste Management》2017,19(3):1036-1043
The aim of this study was to produce renewable energy from exhausted coffee residue, which is a form of biomass. As coffee preference continues to increase, the importation of coffee beans has been increasing sharply. However, the amount of coffee that is actually consumed is only about 0.2% of coffee beans, while the spent coffee beans are discarded in the form of exhausted coffee residue. Hydrothermal carbonization is a method of producing an improved fuel from renewable energy sources by changing the physical and chemical properties of biochars. Biochars were obtained from a variety of reaction temperatures during hydrothermal carbonization and analyzed using elemental analysis, ultimate analysis, and calorific value measurement. The atomic C/O and C/H ratios of all obtained biochars decreased and were found to be similar to those of lignite and sub-bituminous coal. The highest energy recovery efficiency of biochar indicates that the optimum reaction temperature for hydrothermal carbonization was between 210 and 240 °C, which produced biochars with calorific value of approximately 26–27 MJ/kg. The spectra of biochars obtained from Fourier transform infrared spectroscopy (FTIR) showed fewer C–O and aliphatic C–H functional groups, but more carbonyl C=O functional groups and aliphatic CH x groups. The results of this study indicate that hydrothermal carbonization can be used as an effective means to generate highly energy-efficient renewable fuel resources from coffee residue. The thermogravimetric analysis provided the changing combustion characteristics due to increased fixed carbon content. 相似文献
4.
The operations of carbonization facilities for municipal solid waste treatment in Japan were examined. Input waste, system processes, material flows, quality of char and its utilization, fuel and chemical consumption, control of facility emissions, and trouble areas in facility operation were investigated and analyzed. Although carbonization is a technically available thermochemical conversion method for municipal solid waste treatment, problems of energy efficiency and char utilization must be solved for carbonization to be competitive. Possible solutions include (1) optimizing the composition of input waste, treatment scale, organization of unit processes, operational methods, and quality and yield of char on the basis of analysis and feedback of long-term operating data of present operating facilities and (2) securing stable char demands by linking with local industries such as thermal electric power companies, iron manufacturing plants, and cement production plants. 相似文献
5.
Liang Li McKenzie Hale Petra Olsen Nicole D. Berge 《Waste management (New York, N.Y.)》2014,34(11):2185-2195
Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250 °C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. 相似文献
6.
在构建福州经济技术开发区产业低碳化转型评价指标体系的基础上,运用主成分分析法与标准离差法进行模糊Borda组合评价的综合评价模型,对不同情景进行定量分析,提出福州经济技术开发区产业低碳化转型的重点调整部门和重点发展部门,为福州经济技术开发区的产业低碳化转型提供参考. 相似文献
7.
8.
Effect of mixing ratio of woody waste and food waste on the characteristics of carbonization residue
Biomass such as woody waste and food waste can be converted to a renewable energy source by means of carbonization processes. The basic characteristics of woody waste and food waste, such as proximate analysis and heating value, were evaluated before carrying out carbonization tests. Carbonization tests were carried out to obtain the basic characteristics of carbonization residue on changing the proportion of food waste from 0% to 30% in the mixture of woody waste and food waste. The effect of the food waste was estimated by basic characteristics of the residue such as the heating value, yield, and fuel ratio. As increased the food waste content, the bulk density, yield and chlorine content of the carbonization residue increased, but fuel ratio, the carbon content and heating value of the residue decreased. From the results of the basic characteristics of the residue, the optimum food waste content in carbonization tests was found to be 20%. Even if food waste is combined with woody waste at levels up to 30%, the sulfur and chlorine concentrations in the residue were much lower than the regulatory standard levels. From the results for the fuel ratio and heating value of the residue, the carbonization residue is suitable for use as a renewable energy source and can be categorized by the second grade level of solid fuel products. 相似文献
9.
10.
11.
从大港油田石油污染土壤中分离筛选出1株原油降解菌X3,对原油的降解率达72.6%,经鉴定X3菌株属于假单胞菌属(Psedomonas)。利用生物摇床对X3菌株降解原油的实验发现,共代谢基质α-乳糖对X3菌株降解原油有促进作用,可使原油降解率提高到80.3%;而葡萄糖和蔗糖对X3菌株降解原油有抑制作用。Fe2+对X3菌株的降解原油也有促进作用,在α-乳糖和Fe2+的共同作用下,X3菌株对原油的降解率可达82.3%;K+和Mg2+对X3菌株降解原油则有抑制作用。在FeSO4质量浓度为0.2~0.3mg/L时,X3菌株对原油的降解率最高,FeSO4质量浓度继续增加,X3菌株对原油的降解率下降。 相似文献
12.
Aronica S Bonanno A Piazza V Pignato L Trapani S 《Waste management (New York, N.Y.)》2009,29(1):233-239
In this work, a procedure is suggested to assess the rate of biogas emitted by the Bellolampo landfill (Palermo, Italy), starting from the data acquired by two of the stations for monitoring meteorological parameters and polluting gases. The data used refer to the period November 2005-July 2006. The methane concentration, measured in the CEP suburb of Palermo, has been analysed together with the meteorological data collected by the station situated inside the landfill area. In the present study, the methane has been chosen as a tracer of the atmospheric pollutants produced by the dump. The data used for assessing the biogas emission refer to night time periods characterized by weak wind blowing from the hill toward the city. The methane rate emitted by the Bellolampo dump has been evaluated using a Gaussian model and considering the landfill both as a single point source and as a multiple point one. The comparison of the results shows that for a first approximation it is sufficient to consider the landfill of Palermo as a single point source. Starting from the monthly percentage composition of the biogas, estimated for the study period, the rate of biogas produced by the dump was evaluated. The total biogas produced by the landfill, obtained as the sum of the emitted component and the recovered one, ranged from 7519.97 to 10,153.7m3/h. For the study period the average monthly estimations of biogas emissions into the atmosphere amount to about 60% of the total biogas produced by the landfill, a little higher than the one estimated by the company responsible for the biogas recovery plant at the landfill. 相似文献
13.
Liang Li Ryan Diederick Joseph R.V. Flora Nicole D. Berge 《Waste management (New York, N.Y.)》2013,33(11):2478-2492
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275 °C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. 相似文献
14.
Hikari Kanno Naoya Tachibana Junki Yonaiyama Masami Fukushima 《Journal of Material Cycles and Waste Management》2012,14(2):139-145
For raw organic wastes (ROWs) that are produced on a daily basis, a thermal treatment using an organo-iron catalyst with the ROW added in portion was examined for conversion to compost-like materials (CLMs). The mixture of initial materials (rice bran as a model ROW, red loam as a bulking agent, and an organo-iron catalyst) was incubated at 60?°C for 5?days. It was then heated at 170?°C for 8?h, and small portions of a mixture of rice bran and catalyst were added. This process was repeated a total of 45 times. The qualities of the CLMs were evaluated, based on the degree of humification of humic-like acids (HLAs) that were contained in the products. Thus, the HLAs were extracted from the prepared CLMs, and the levels of unsaturated carbons and oxygen- and nitrogen-containing compounds were analyzed and used as indices of the degree of humification. The influence of the initial materials on the degree of humification of the HLAs was investigated, and the highest degree of humification was obtained when red loam and the catalyst were both added with the initial materials. 相似文献
17.
18.
Owing to the large amount of waste slags produced by zinc industry, it has become necessary to recycle it in some areas. Road construction has significant potential for the use of waste materials because more material is always needed. In this study, the engineering behaviour of asphalt concrete was investigated using mineral aggregates with waste slag, which is a by-product of the zinc–lead production industry. The asphalt concrete tested in this study was fabricated using 25, 50, 75 and 100 % mixing ratios instead of the conventional fine mineral aggregate (11, 22, 33 and 44 % rate of total aggregate mixture) to determine the possibility of using slags in the binder course of bituminous hot mixtures. The asphalt concretes, made of waste slags and conventional asphalt concrete, were evaluated in terms of their fundamental engineering properties such as Marshall stability, flow, Marshall quotient (MQ), bulk specific gravity, air voids and voids filled with bitumen in the total mix characteristics. The results indicate that the addition of waste slag as mineral aggregate improves the engineering characteristic performance and that it can be used in bituminous hot mixtures. In addition, principal component analyses were applied to examine the significance of each Marshall parameter, and a regression model was developed to estimate the MQ value using effective parameters. 相似文献
19.
两株柴油降解菌的性能研究 总被引:3,自引:0,他引:3
以0#柴油为惟一碳源,对两株柴油降解菌DS-Ⅰ菌和DS-Ⅲ菌降低液体表面张力的能力、柴油降解动力学及表面活性物质成分进行了研究。实验结果表明:DS-Ⅰ菌和DS-Ⅲ菌在生长过程中均可产生糖脂类生物表面活性物质,使发酵液表面张力降低;在11d的发酵时间内,DS-Ⅰ菌和DS-Ⅲ菌使发酵液中柴油的质量浓度从48.72m g/L分别降至16.64m g/L和9.17m g/L,柴油降解率分别为65.84%和81.18%,柴油降解速率分别为5.16m g/(L.d)和5.96m g/(L.d)。发酵液表面张力的降低与柴油的降解效果有显著的相关性。DS-Ⅲ菌在疏水性、对柴油的生长适应性和柴油降解速率等方面比DS-Ⅰ菌更好。 相似文献