首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field-based system used to quantify the response of acid grassland to reduced atmospheric nitrogen and sulphur deposition, and to investigate the effects of elevated soil temperature on acid grassland development is described. The system is based on 12 retractable roofs, covering undisturbed experimental plots of acid grassland and three controls. Nine roofs are used to exclude natural precipitation and three roofs used to retain emitted IR radiation at night. An irrigation system has been developed to simulate natural precipitation, allowing for the application of specific treatment regimes of ambient, reduced nitrogen and reduced nitrogen/sulphur deposition beneath the nine rain exclusion plots. Plant, soil parameters, leachate chemistry and gaseous fluxes are being monitored and initial results on soil water chemistry are described. Warming appeared to enhance nitrate concentrations in soil water but this was not sustained beyond the first year of treatment. In contrast, the deposition reduction treatments decreased soil water nitrate concentrations within a few weeks of reducing deposition. This was not observed for other solutes such as sulphate or ammonium suggesting a more direct link between deposition of nitrate and leaching losses.  相似文献   

2.
The MAGIC model was calibrated to 143 lakes in Sweden, all of which are monitored in Swedish national monitoring programmes conducted by the University of Agricultural Sciences (SLU). Soil characteristics of the lake catchments were obtained from the National Survey of Forest Soils and Vegetation also carried out by SLU. Deposition data were provided by the Swedish Meteorological and Hydrological Institute (SMHI). The model successfully simulated the observed lake and soil chemistry at 133 lakes and their catchments. The fact that 85% of the lakes calibrated successfully without being treated in an individual way suggests that data gathered by the national monitoring programmes are suitable for modelling of soil and surface water recovery from acidification. The lake and soil chemistry data were then projected into the future under the deposition scenario based on emission reductions agreed in the Gothenburg protocol. Deposition of sulphur (sea salt corrected) was estimated to decrease from 1990 to 2010 by 65–73%; deposition of nitrogen was estimated to decrease by 53%. The model simulated relatively rapid improvements in lake water chemistry in response to the decline in deposition from 1990 to 2010, but the improvements levelled off once deposition stabilised at the lower value. There was a major improvement of simulated lake water charge balance acid neutralising capacity (ANC) from 1990 to 2010 in all lakes. The modelled lakes were divided into acidification sensitive and non-sensitive. The modelled sensitive lakes are representative of 20% of the most sensitive lakes in Sweden. By 2010, the ANC in the sensitive lakes was 10 to 50 μeq L-1 below estimated pre-industrial levels and did not increase much further from 2010 to 2040. Soils at the majority of the modelled catchments continued to lose base cations even after the simulated decline in acid deposition was complete, i.e. after the year 2010. Based on this model prediction, the acidification of the Swedish soils will in general not be reversed by the deposition reduction experienced over the last 10 years and expected to occur by the year 2010.  相似文献   

3.
The atmospheric deposition of reactive nitrogen on turf grassland in Tsukuba, central Japan, was investigated from July 2003 to December 2004. The target components were ammonium, nitrate, and nitrite ions for wet deposition and gaseous ammonia, nitric and nitrous acids, and particulate ammonium, nitrate, and nitrite for dry deposition. Organic nitrogen was also evaluated by subtracting the amount of inorganic nitrogen from total nitrogen. A wet-only sampler and filter holders were used to collect precipitation and the atmospheric components, respectively. An inferential method was applied to calculate the dry deposition velocity of gases and particles, which involved the effects of surface wetness and ammonia volatilization through stomata on the dry deposition velocity. The mean fraction of the monthly wet to total deposition was different among chemical species; 37, 77, and 1% for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. The annual deposition of inorganic nitrogen in 2004 was 47 and 48 mmol m−2 yr−1 for wet and dry deposition, respectively; 51% of atmospheric deposition was contributed by dry deposition. The annual wet deposition in 2004 was 20, 27, and 0.07 mmol m−2 yr−1, and the annual dry deposition in 2004 was 35, 7.4, and 5.4 mmol m−2 yr−1 for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. Ammoniacal nitrogen was the most important reactive nitrogen because of its remarkable contribution to both wet and dry deposition. The median ratio of the organic nitrogen concentration to total nitrogen was 9.8, 17, and 15% for precipitation, gases, and particles, respectively.  相似文献   

4.
In 1989, a watershed acidification experiment was begun on the Fernow Experimental Forest in West Virginia, USA. Ammonium sulfate fertilizer (35.5 kg N ha−1 yr−1and 40.5 kg S ha−1 yr−1) was applied to a forested watershed (WS3) that supported a 20-year-old stand of eastern deciduous hardwoods. Additions of N and S are approximately twice the ambient deposition of nitrogen and sulfur in the adjacent mature forested watershed (WS4), that serves as the reference watershed for this study. Acidification of stream water and soil solution was documented, although the response was delayed, and acidification processes appeared to be driven by nitrate rather than sulfate. As a result of the acidification treatment, nitrate solution concentrations increased below all soil layers, whereas sulfate was retained by all soil layers after only a few years of the fertilization treatments, perhaps due to adsorption induced from decreasing sulfate deposition. Based on soil solution monitoring, depletion of calcium and magnesium was observed, first from the upper soil horizons and later from the lower soil horizons. Increased base cation concentrations in stream water also were documented and linked closely with high solution levels of nitrate. Significant changes in soil chemical properties were not detected after 12 years of treatment, however.  相似文献   

5.
Laboratory experiments were performed using 24,900 mm deep soil columns to determine the amounts of nitrogen lost through the processes of leaching and ammonia volatilization from land receiving high applications of dairy cattle manure. The soil columns were conditioned over a period of one year before the start of the experiment and a conscious effort was made to make the physical properties of the columns soil sufficiently reproduced to resemble the undisturbed soil. The effects of three manure and three water application rates on nitrogen losses were monitored over a period of 10 weeks. The concentrations of nitrogen compounds in the leachates obtained from the soil columns were very low. The observed losses of nitrogen caused by leaching and ammonia volatilization were influenced by manure and water application rates. The high concentration of nitrate nitrogen at the beginning of the experiment has the potential of causing groundwater pollution. Also, ammonia volatilization is considered high enough to cause serious odor problems.  相似文献   

6.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   

7.
The SO4–S and NO3–N concentrations and pH in bulk precipitation, throughfall, stemflow and soil water for the 1994–2004 period were studied in pine forests in Latvia (Rucava and Taurene Integrated Monitoring stations). The SO4–S and NO3–N concentrations decreased over the study period, simultaneously with a decrease of acidity in precipitation. The changes were more evident in the western part of Latvia, probably due to declining long-range air pollution from West Europe. The trend of decreasing sulphate concentrations and increasing pH in precipitation were not followed by respective changes in soil water. In the upper soil horizon sulphate ion concentrations and acidity increased in soil water. Over the observation period, nitrate concentrations also showed an increasing trend in soil water at Rucava and Taurene, but these changes were not statistically significant.  相似文献   

8.
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO? 3?N and NH+ 4?N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha?1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha?1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

9.
Curtis  C. J.  Barbieri  A.  Camarero  L.  Gabathuler  M.  Galas  J.  Hanselmann  K.  Kopaček  J.  Mosello  R.  Nickus  U.  Rose  N.  Stuchlik  E.  Thies  H.  Ventura  M.  Wright  R. 《Water, Air, & Soil Pollution: Focus》2002,2(2):115-126
Critical load models for acidityprovide a measure of the sensitivity of surfacewaters to acid deposition, and can be used todetermine critical load exceedance and potentiallong-term harmful effects. Three static models,the Steady-State Water Chemistry model, diatommodel and First-order Acidity Balance model, arehere applied to 11 high mountain lakes in Norway,Scotland, the Alps, the Pyrenees and the Tatras.Between five and seven of the lakes show criticalload exceedance, depending on the model used.Nitrogen as well as sulphur deposition isimportant in causing exceedance. Since soil andvegetation cover are generally sparse, geologyand lake retention time appear to be key factorsin the determination of critical load. Retentionof nitrogen is observed, but it is unclearwhether this occurs within the lake or theterrestrial part of the catchment.  相似文献   

10.
Links between forest floor carbon:nitrogen (C:N) ratios, atmospheric N deposition and nitrate leaching into surface waters have been reported for forest ecosystems, but similar studies have not been reported previously for the equivalent compartments of moorland ecosystems in Great Britain, despite the importance of nitrate in contributing to the acidification of moorland streams and lakes in British uplands. In this paper, the relationships between the C:N ratio of moorland soil surface organic matter, N deposition, and nitrate leaching are explored for 13 soils in four moorland catchments. Although there is spatial variability in the C:N ratio of soils, major differences are apparent between soils and especially between catchments. The C:N ratio appears to be inversely related to modelled inorganic N deposition and, to a lesser degree, measured nitrate leaching, for three of the four catchments studied (Allt a'Mharcaidh, Afon Gwy, and Scoat Tarn). Nitrification may make an important contribution to nitrate leaching at the two higher deposition sites. At the fourth site, the heavily acidified River Etherow catchment, extremely high rates of nitrate leaching are not accompanied by low C:N ratios or high nitrification potentials in the upper soil horizons. Hence the C:N ratio of surface soil organic matter may have potential as an indicator of nitrogen saturation and leaching in some systems, but it is not universally applicable.  相似文献   

11.
It is well established that wet deposition of sulphate in the UKhas fallen by a much smaller fraction than have emissions of sulphur dioxide. Dry deposition of sulphur has decreased in proportion to the decline in emissions. A number of suggestionshave been made which offer possible explanations for this non-linearity between emissions and wet deposition. In this paper amodel of the processing of sulphur dioxide by aqueous phase cloudchemistry in a cloudy boundary layer is presented. This work doesnot simulate all the details of the mechanisms by which sulphate is incorporated into precipitation. It does, however, explorethe non-linearity of this oxidation process. It is shown that theoxidation of sulphur dioxide, in these conditions, over the UK isdominated by oxidation by ozone. The rate of sulphate productionis then controlled by the availability of the one basic trace gasin the atmosphere ammonia. Using realistic concentrations of thereacting species this is found to simulate well the observed non-linearity. The model predicts that sulphate and sulphur dioxideconcentrations will be uncorrelated in the cloudy boundary layerbut that ammonium and sulphate will be well correlated. Fieldobservations at a cloudy site in Northern England are consistentwith these predictions.  相似文献   

12.
Factors influencing soil profile nitrogen storage (SPNS) in GB have been investigated. The SPNS values of moorland peats and podzols in the South Pennines, of permanent grassland in Yorkshire, and of adjacent arable-, semi-permanent grassland- and ancient woodland-soils in Worcestershire have been compared to assess land use effects. The soils exhibited similar SPNS values, because changes in bulk density and organic matter composition offset increases in N concentrations in highly organic soils. Data from the Soil Survey of Scotland were used to show effects of soil parent material on SPNS were also small. Data on Scottish podzol soils under heather moorland and derived from sandstone or quartzite were used to show that SPNS declined with increasing precipitation, but increased with the amount of pollutant N deposited from the atmosphere.  相似文献   

13.
Factors influencing soil profile nitrogen storage (SPNS) in GB have been investigated. The SPNS values of moorland peats and podzols in the South Pennines, of permanent grassland in Yorkshire, and of adjacent arable-, semi-permanent grassland- and ancient woodland-soils in Worcestershire have been compared to assess land use effects. The soils exhibited similar SPNS values, because changes in bulk density and organic matter composition offset increases in N concentrations in highly organic soils. Data from the Soil Survey of Scotland were used to show effects of soil parent material on SPNS were also small. Data on Scottish podzol soils under heather moorland and derived from sandstone or quartzite were used to show that SPNS declined with increasing precipitation, but increased with the amount of pollutant N deposited from the atmosphere.  相似文献   

14.
In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Höglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a?1), and acid irrigation with diluted sulphuric acid (pH of 2.6–2.8). During the seven years of acid irrigation (1984–1990) water containing 0.43 molc m?2 a?1 of protons and sulphate was added with a mean pH of 3.2 (throughfall?+?acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca?+?Mg?+?K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil.  相似文献   

15.
The Cairngorms in north-east Scotland is remote from pollutant sources although it currently receives ca. 10 kg ha1 yr1 S and ca. 11 kg ha1 yr1 N deposition from the atmosphere.In 1955, 15 lochs (lakes) at a range of altitudes were sampled and analysed for major ion concentrations. A new survey of these and an additional 23 lochs and their catchment soils was conducted in 1999 to determine the impact of acid deposition, and the changes in loch chemistry since the 1955 survey. The bedrock geology of this region has a strong influence on the loch chemistry. Surface waters were generally more acidic in high altitude areas due to predominantly poorly buffered, thin alpine soils developed on granitic parent material (mean acid neutralising capacity (ANC) for 23 lochs = 30 eq L1). At lower altitudes where the geology is dominated by Dalradian metamorphic rocks surface waters are comparatively base rich and have higher ANC (mean ANC for 15 lochs = 157 eq L1). Surface water nitrate concentrations show a negative relationship with soil C:N status, in that higher nitrate only occurs at low soil C:N ratios. A comparison of data for 1955 and 1999 shows that sulphate concentrations are significantly lower (67.8 and 47.5 eq L1, respectively), and pH has improved (pH 5.6 and 5.9) in response to decreased S deposition since the mid 1970s. However, mean nitrate concentrations were found to increase from 2.48 >eq L1 in 1955 to 5.65 eq L1 in 1999. Differences in the sampling and laboratory methods from 1955 and 1999 are acknowledged in the interpretation of data.  相似文献   

16.
A Chronology of Nitrogen Deposition in the UK Between 1900 and 2000   总被引:2,自引:0,他引:2  
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO 3 –N and NH 4 + –N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha–1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha–1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

17.
Semi-natural calcareous and acidic grasslands are known to be sensitive to increased atmospheric N deposition. However, the fate of pollutant N within these systems is unknown. This paper reports on the first studies to determine the fate of added N within a calcareous and an acidic grassland subject to long-term simulated enhanced N deposition. Intact soil/turf cores were removed from field plots treated for six years with enhanced N deposition (ambient +0, +35 and +140 kg N ha?1 year?1). Cores were inserted into lysimeters and output fluxes of N were monitored in detail. Complete N budgets—calculated from the N flux data—showed considerable accumulation of N within the treated grasslands, up to 76% and 38% of pollutant N in the calcareous and acidic grasslands respectively. In the second study, the short-term (21 day) fate of pollutant N was determined by tracing 15N labelled ammonium nitrate (+35 kg N ha?1 year?1) though the acidic and calcareous lysimeters into plant, soil and leachate pools. Up to 91% and 59% of 15N was recovered in soils and vegetation of the calcareous and acidic grasslands respectively, with negligible amounts recovered in soil extractable ammonium and nitrate (<0.3%) and in leachate (<0.02%). This rapid short-term immobilisation of pollutant N supports the long-term accumulation of the element calculated from the N flux study.  相似文献   

18.
To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition time-series (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds.  相似文献   

19.
Size resolved particle composition and nitric acid (HNO3)measurements from the ASEPS'98 experiment conducted in the BalticSea are used to provide observational evidence of substantialgas-particle transfer of oxidized nitrogen (N) compounds in themarine boundary layer. We then focus on the importance ofHNO3 reactions on sea salt particles in determining spatio-temporal patterns of N dry deposition to marine ecosystems.Modelling results obtained assuming no kinetic or chemical limiton HNO3 uptake and horizontally homogeneous conditions withnear-neutral stability, indicate that for wind speeds 3.5 – 10 ms-1 transfer of HNO3 to the particle phase to formparticle nitrate (NO3 -) may decrease the N depositionvelocity by 50%. We extend this research using the CHEM-COASTmodel to demonstrate that, in a sulphur poor environment undermoderate wind speeds with HNO3 concentrations representativeof those found in the marine boundary layer, inclusion ofheterogeneous reactions on sea spray significantly reducesmodelled NO3 - deposition in the near coastal zone.  相似文献   

20.
Emissions of sulphur and oxidized nitrogen compounds in Europe have been reduced following a series of control measures during the last two decades. These changes have taken place during a period in which the primary gases and the wet deposition throughout Europe were extensively monitored. Since the end of the 1970s, for example land based sulphur emissions declined by between 90 and 70% depending on the region. Over the same period the total deposition of sulphur and its partitioning into wet and dry deposition have declined, but the spatial pattern in the reduction in deposition differs from that of emission and has changed with time. Such non-linearities in the emission-deposition relationship are important to understand as they complicate the process of assessing the effects of emission reduction strategies. Observed non-linearities in terrestrial sulphur emission-deposition patterns have been identified in north west Europe due to increases in marine emissions, and are currently slowing the recovery of freshwater ecosystems. Changes in the relative amounts of SO2 and NH3 in air over the last two decades have also changed the affinity of terrestrial surfaces for SO2 and have therefore changed the deposition velocity of SO2 over substantial areas. The consequence of this effect has been the very rapid reduction in ambient SO2 concentration in some of the major source areas of Europe, where NH3 did not change much. Interactions between the different pollutants, generating non-linearities are now being incorporated in long-range transport models to simulate the effects of historical emission trends and to provide projections into the future. This paper identifies non-linearities in emission deposition relationships for sulphur and nitrogen compounds in Europe using data from the EMEP long-rang transport model and measured concentration fields of the major ions in precipitation and of SO2 and NO2 in surface air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号