首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple bioenergetics models were used to derive annual nitrogen excretion rates of each seabird species occurring at colonies in the UK. These were combined with population distribution data and an estimated fraction of nitrogen volatilized to estimate the spatial distribution of NH3 emissions from seabird colonies at a 1 km resolution. The effect of these emissions on atmospheric NH3 concentrations and nitrogen deposition in the UK was assessed using the FRAME atmospheric chemistry and transport model. The total emission of NH3 from the UK seabird colonies is estimated at 2.7 kt yr–1. Emissions from seabirds are largely concentrated in remote parts of Britain, where agricultural and other anthropogenic emissions are minimal. Although seabirds account for less than 1% of total UK NH3 emissions (370 kt yr–1), their occurrence in remote areas and frequently large colony sizes results in seabirds providing a major fraction of the atmospheric nitrogen deposition for many remote ecosystems.  相似文献   

2.
Ammonia emissions from two contrasting seabird colonies in Scotland were measured, based on the determination of atmospheric concentrations downwind of the colonies. Atmospheric concentrations of ammonia (NH3) across the downwind plume were compared with the inverse application of a Gaussian dispersion model (ID) to calculate the modelled NH3 emission that would generate the measured cross-wind-integrated plume concentration. In parallel, a tracer gas (sulphur hexafluoride, SF6) was released from the colonies with air samples taken to allow determination of SF6 concentrations. On the basis of the known emission rate of SF6, the magnitude of ammonia emissions was estimated by the cross-wind-integrated tracer ratio (TR) of NH3/SF6 concentrations. Coupled with data on annual bird attendance, the measurements indicate annual emissions from the Isle of May and the Bass Rock of 18 and 132 tonnes NH3-N year?1, respectively. The measured NH3 emissions were compared with estimates of seabird nitrogen excretion to estimate the proportion of excreted N that is volatilised as NH3 (F Nr). The emission estimates of the two methods compared favourably, giving 4 and 6 kg NH3-N h?1 (F Nr = 15%) for the Isle of May for the ID and TR methods, respectively, and 21 and 25 kg NH3-N h?1 (F Nr = 50%) for the Bass Rock for the ID and TR methods, respectively. The results provide the first measurement-based estimates to allow regional up scaling of ammonia emissions from seabirds.  相似文献   

3.
Ammonia emissions from two contrasting seabird colonies in Scotland were measured, based on the determination of atmospheric concentrations downwind of the colonies. Atmospheric concentrations of ammonia (NH3) across the downwind plume were compared with the inverse application of a Gaussian dispersion model (ID) to calculate the modelled NH3 emission that would generate the measured cross-wind-integrated plume concentration. In parallel, a tracer gas (sulphur hexafluoride, SF6) was released from the colonies with air samples taken to allow determination of SF6 concentrations. On the basis of the known emission rate of SF6, the magnitude of ammonia emissions was estimated by the cross-wind-integrated tracer ratio (TR) of NH3/SF6 concentrations. Coupled with data on annual bird attendance, the measurements indicate annual emissions from the Isle of May and the Bass Rock of 18 and 132 tonnes NH3-N year–1, respectively. The measured NH3 emissions were compared with estimates of seabird nitrogen excretion to estimate the proportion of excreted N that is volatilised as NH3 (FNr). The emission estimates of the two methods compared favourably, giving 4 and 6 kg NH3-N h–1 (FNr = 15%) for the Isle of May for the ID and TR methods, respectively, and 21 and 25 kg NH3-N h–1 (FNr = 50%) for the Bass Rock for the ID and TR methods, respectively. The results provide the first measurement-based estimates to allow regional up scaling of ammonia emissions from seabirds.  相似文献   

4.
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO? 3?N and NH+ 4?N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha?1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha?1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

5.
A Chronology of Nitrogen Deposition in the UK Between 1900 and 2000   总被引:2,自引:0,他引:2  
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO 3 –N and NH 4 + –N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha–1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha–1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

6.
To evaluate the influence of anthropogenic emission of HCl on the air quality in the Kanto district of Japan, the atmospheric budgetof non-seasalt Cl (nssCl) was analyzed. The Kanto district, which consists of the Tokyo metropolis and the six surrounding prefectures, is the most densely populated region in Japan. The emission intensity of HCl is extremely high compared with those in other regions and most western countries. In this study, the annual wet and dry depositions of nssClwere estimated on a 0.25 × 0.25° grid over the Kanto district based on the concentration monitoring resultsand meteorological data. The budget analysis was conducted by comparing the estimated deposition with the emission of HCl. As a result, the annual total (wet + dry) deposition of nssCl was estimated to be 32 kt yr-1, which closely agreed with HCl emission (36 kt yr-1) from waste incineration in this area. The result suggested that the anthropogenic emission of HCl had a significant influence on the air quality and the deposition of acidity in this area.  相似文献   

7.
Regular additions of NH4NO3 (35–140 kg N ha−1 yr−1) and (NH4)2SO4 (140 kg N ha−1 yr−1) to a calcareous grassland in northern England over a period of 12 years have resulted in a decline in the frequency of the indigenous bryophyte species and the establishment of non-indigenous calcifuge species, with implications for the structure and composition of this calcareous bryophyte community. The lowest NH4NO3 additions of 35 kg N ha−1 yr−1 produced significant declines in frequency of Hypnum cupressiforme, Campylium chrysophyllum, and Calliergon cuspidatum. Significant reductions in frequency at higher NH4NO3 application rates were recorded for Pseudoscleropodium purum, Ctenidum molluscum, and Dicranum scoparium. The highest NH4NO3 and (NH4)2SO4 additions provided conditions conducive for the establishment of two typical calcifuges – Polytrichum spp. and Campylopus introflexus, respectively. Substrate-surface pH measurements showed a dose-related reduction in pH with increasing NH4NO3 deposition rates of 1.6 pH units between the control and highest deposition rate, and a further significant fall in pH, of >1 pH unit, between the NH4NO3 and (NH4)2SO4 treatments. These results suggest that indigenous bryophyte composition may be at risk from nitrogen deposition rates of 35 kg N ha−1 yr−1 or less. These effects are of particular concern for rare or endangered species of low frequency.  相似文献   

8.
The atmospheric deposition of reactive nitrogen on turf grassland in Tsukuba, central Japan, was investigated from July 2003 to December 2004. The target components were ammonium, nitrate, and nitrite ions for wet deposition and gaseous ammonia, nitric and nitrous acids, and particulate ammonium, nitrate, and nitrite for dry deposition. Organic nitrogen was also evaluated by subtracting the amount of inorganic nitrogen from total nitrogen. A wet-only sampler and filter holders were used to collect precipitation and the atmospheric components, respectively. An inferential method was applied to calculate the dry deposition velocity of gases and particles, which involved the effects of surface wetness and ammonia volatilization through stomata on the dry deposition velocity. The mean fraction of the monthly wet to total deposition was different among chemical species; 37, 77, and 1% for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. The annual deposition of inorganic nitrogen in 2004 was 47 and 48 mmol m−2 yr−1 for wet and dry deposition, respectively; 51% of atmospheric deposition was contributed by dry deposition. The annual wet deposition in 2004 was 20, 27, and 0.07 mmol m−2 yr−1, and the annual dry deposition in 2004 was 35, 7.4, and 5.4 mmol m−2 yr−1 for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. Ammoniacal nitrogen was the most important reactive nitrogen because of its remarkable contribution to both wet and dry deposition. The median ratio of the organic nitrogen concentration to total nitrogen was 9.8, 17, and 15% for precipitation, gases, and particles, respectively.  相似文献   

9.
Estimates of soil N2O and NOemissions at regional and country scales arehighly uncertain, because the most widely usedmethodologies are based on few data, they do notinclude all sources and do not account forspatial and seasonal variability. To improveunderstanding of the spatial distribution of soilNO and N2O emissions we have developedsimple multi-linear regression models based onpublished field studies from temperate climates.The models were applied to create spatialinventories at the 5 km2 scale of soil NOand N2O emissions for Great Britain. The N2O regression model described soilN2O emissions as a function of soil N input,soil water content, soil temperature and land useand provided an annual N2O emission of 128 kt N2O-N yr-1. Emission rates largerthan 12 kg N2O-N ha-1 yr-1 werecalculated for the high rainfall grassland areasin the west of Great Britain.Soil NO emissions were calculated using tworegression models, which described NO emissionsas a function of soil N input with and without afunction for the water filled pore space. Thetotal annual emissions from both methods, 66 and7 kt NO-N yr-1, respectively, span the rangeof previous estimates for Great Britain.  相似文献   

10.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO? 3 and NH+ 4 aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH+ 4 and NO? 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH+ 4and NO? 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH+ 4, but the relationship between NH+ 4 and N deposition (ln NH+ 4 = 0.62 ln Ndeposition+0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

11.
Major sulphur emission control programs have been implemented in North America, resulting in current emissions being ~30% less than those in 1980. However, the level of acidic deposition remaining is still unlikely to promote widespread recovery of aquatic ecosystems. The First-order Acidity Balance (FAB) model has been applied to south-central Ontario (285 lakes in the Muskoka River Catchment) to evaluate the need for further reductions in emissions. As a result of the past decline in deposition, the proportion of lakes with critical loads exceedance has dropped substantially; however, further reductions in sulphur and nitrogen emissions are required to eliminate critical loads exceedance. Based on bulk deposition of sulphate and nitrogen (41.1 mmolc m-2 yr-1 and 62.5 mmolc m-2 yr-1, respectively) for the period 1995–1999, 166 lakes (58.3%) exceedcritical loads. Even with full implementation of SO2 abatementprograms in Canada (achieved in 1994) and the United States (legislated for 2010), critical loads will be exceeded in a large proportion (46.6%) of the study lakes.  相似文献   

12.
Continuous micrometorological measurements of ammonia (NH3)exchange were made for a period of 19 months (May 1998–November 1999) over intensively managed grassland in southern Scotland. This study focused on the influence of management activities, such as cutting and fertilising, on vegetation-atmosphere exchange of NH3. Measurements were conducted within the European project GRAMINAE (GRassland AMmonia INteractions Across Europe) within which the Scottish site forms one of 6 sites in an E–W transect across Europe. NH3 emissions were enhanced (up to 300 ng m-2 s-1) after cutting followed by larger emissions after fertilising (up to 1400 ng m-2 s-1). Annual budget calculations show the intensive grassland acted as a net source (1.8 kg N ha-1 yr1) although fluxes were bi-directional with deposition dominating in the winter and emission in the summer. Initial modelling of the NH3 exchange using a `canopy compensation point' model has been conducted for key periods. The dynamics of the fluxes during these key periods, such as before and after cutting and fertilising, may be reproduced by introducing different values of the apoplastic ratio, = [NH4 +]/[H+].  相似文献   

13.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO 3 and NH 4 + aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH 4 + and NO 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH 4 + and NO 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH 4 + , but the relationship between NH 4 + and N deposition (ln NH 4 + = 0.62 ln Ndeposition + 0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   

14.
Spatial and temporal changes in mobility of N species have been studied for three UK upland river networks, the Etherow in the South Pennines, the Nether Beck in the Lake District and the Dee in NE Scotland. The catchments are subject to N deposition at 35.1, 22.0 and 10.8–15.6 kg N ha?1 yr?1, respectively. The NH+ 4 leaching appears to be predominantly regulated by flow path in more polluted upland catchments. It is greatest where water draining acidified peaty soils contributes more to total discharge. Soluble organic matter may provide the dominant counter anion. In the Etherow and Dee catchments, which are dominated by acid mineral and organic soils, at high discharge NO? 3 also appears to be associated with greater input of water from acidified soils. In contrast, for the Nether Beck, higher NO? 3 concentrations are associated with tributaries draining soils contributing water with higher alkalinity, suggesting nitrification is important. For the Etherow and Dee, dissolved organic N (DON) appears to originate predominantly from acidified, peaty soils. Spiking experiments with peat soil from the Etherow catchment confirmed the limited capacity of these soils to utilize inorganic N inputs, favouring equilibration with NH+ 4 inputs and leaching losses of inorganic N throughout the year.  相似文献   

15.
Providing an accurate estimate of the dry component of N deposition to low N background, semi-natural habitats, such as bogs and upland moors dominated by Calluna vulgaris is difficult, but essential to relate nitrogen deposition to effects in these communities. To quantify the effects of NH3 inputs to moorland vegetation growing on a bog at a field scale, a field release NH3 fumigation system was established at Whim Moss (Scottish Borders) in 2002. Gaseous NH3 from a line source was released along of a 60 m transect, when meteorological conditions (wind speed >2.5 m s?1 and wind direction in the sector 180–215°) were met, thereby providing a profile of decreasing NH3 concentration with distance from the source. In a complementary study, using a NH3 flux chamber system, the relationships between NH3 concentrations and cuticular resistances were quantified for a range of NH3 concentrations and micrometeorological conditions for moorland vegetation. Cuticular resistances increased with NH3 concentration from 11 s m?1 at 3.0 μg m?3 to 30 s m?1 at 30 μg m?3. The NH3 concentration data and the concentration-dependent canopy resistance are used to calculate NH3 deposition taking into account leaf surface wetness. The implications of using an NH3 concentration-dependent cuticular resistance and the importance for refining critical loads are discussed.  相似文献   

16.
This paper provides the background to this special issue, outlining the extent to which the global atmospheric nitrogen cycle has been modified by human activity and outlining the range of effects. The global total emissions of reduced and oxidized nitrogen, amount to 124 Tg N, and exceed those from natural sources (34 Tg N) by almost a factor of four showing the extent to which anthropogenic activity has taken over the global N cycle. Of the 124 Tg N, 70 Tg N is emitted in the oxidized form, largely as NO and 70% of which results directly from anthropogenic activity. The remaining 54 Tg N is emitted as NH3, (66% anthropogenic). The enhanced nitrogen emissions are associated with a range of local, regional and global issues including, acidification, eutrophication, climate change, human health and tropospheric O3. The paper also places the Global Nitrogen Enrichment (GaNE) research programme in the UK in a wider perspective.  相似文献   

17.
This paper provides the background to this special issue, outlining the extent to which the global atmospheric nitrogen cycle has been modified by human activity and outlining the range of effects. The global total emissions of reduced and oxidized nitrogen, amount to 124 Tg N, and exceed those from natural sources (34 Tg N) by almost a factor of four showing the extent to which anthropogenic activity has taken over the global N cycle. Of the 124 Tg N, 70 Tg N is emitted in the oxidized form, largely as NO and 70% of which results directly from anthropogenic activity. The remaining 54 Tg N is emitted as NH3, (66% anthropogenic). The enhanced nitrogen emissions are associated with a range of local, regional and global issues including, acidification, eutrophication, climate change, human health and tropospheric O3. The paper also places the Global Nitrogen Enrichment (GaNE) research programme in the UK in a wider perspective.  相似文献   

18.
Two models, N_EXRET and INCA, were applied to the Simojoki river basin (3160 km2) in northern Finland in order to assess nitrogen retention in wetlands and lakes. N_EXRET is a spatial, export coefficient-based N export and retention model developed for large river basins. It utilizes remote sensing-based land use and forest classification, evaluated export coefficients, and data on areal N deposition and point sources of N. A new version (v1.7) of the Integrated Nitrogen in CAtchments model (INCA) is a semi-distributed, dynamic nitrogen process model, which simulates and predicts nitrogen transport and processes within catchments. Average retention of the gross total N load of 700 t a-1 to the river system was estimated using N_EXRET model as 17 t N a-1 to the wetlands and 77 t N a-1 to the lakes. A good fit was found between modeled and measured values along the river. Inorganic N fluxes simulated by the INCA model were compared with measured fluxes along the river Simojoki, with a good fit between modeled and measured NH4 +-N fluxes, and an adequate fit for NO3 --N fluxes. Both fluxes were overestimated at the first reach, below Lake Simojärvi. High percentage of peatlands led to high NH4 +-N/NO3 --N ratios derived from data, indicating negligible nitrification in large river subbasins and particularly in small research catchments.  相似文献   

19.
The results from three long-term field manipulation studies of the impacts of increased nitrogen deposition (0–120 kg N ha?1 yr?1) on lowland and upland heathlands in the UK were compared, to test if common responses are observed. Consistent increases in Calluna foliar N content and decreases in litter C:N ratios were found across all sites, while increases in N leaching were not observed at any site over the range 0–80 kg ha?1 yr?1. However, the response of Calluna biomass did vary between sites, possibly reflecting site differences in nutrient status and management histories. Five versions of a simulation model of heathland responses to N were developed, each reflecting different assumptions about the fate and turnover of soil N. Model outputs supported the deduction from mass balance calculations at two of the field sites that N additions have resulted in an increase in immobilisation; the latter was needed to prevent the model overestimating measured N leaching. However, this version of the model significantly underestimated Calluna biomass. Model versions, which included uptake of organic N by Callunaand re-mobilisation of N from the soil organic store provided some improvement in the fit between modelled and field biomass data, but re-mobilisation also led to an overestimation of N leaching. Quantification of these processes and their response to increased N deposition are therefore critical to interpreting experimental data and predicting the long-term impacts of atmospheric deposition on heathlands and moorlands.  相似文献   

20.
Most ammonia (NH3) emission inventories have been calculated on an annual basis and do not take into account the seasonal variability of emissions that occur as a consequence of climate and agricultural practices that change throughout the year. When used as input to atmospheric transport models to simulate concentration fields, these models therefore fail to capture seasonal variations in ammonia concentration and dry and wet deposition. In this study, seasonal NH3 emissions from agriculture were modelled on a monthly basis for the year 2000, by incorporating temporal aspects of farming practice. These monthly emissions were then spatially distributed using the AENEID model (Atmospheric Emissions for National Environmental Impacts Determination). The monthly model took the temporal variation in the magnitude of the ammonia emissions, as well as the fine scale (1-km) spatial variation of those temporal changes into account to provide improved outputs at 5-km resolution. The resulting NH3 emission maps showed a strong seasonal emission pattern, with the highest emissions during springtime (March and April) and the lowest emissions during summer (May to July). This emission pattern was mainly influenced by whether cattle were outside grazing or housed and by the application of manures and fertilizers to the land. When the modelled emissions were compared with measured NH3 concentrations, the comparison suggested that the modelled emission trend corresponds fairly well with the seasonal trend in the measurements. The remaining discrepancies point to the need to develop functional parametrisations of the interactions with climatic seasonal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号