首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large area of plantations has been established worldwide and especially in China. Evaluating the restoration status of these plantations is essential for their long-term management. Based on our previous work, we used an ecological memory (EM) approach to evaluate four 26-year-old plantations that represent four common kinds of plantations in subtropical China, i.e., mixed broad-leaved plantation (MBP), mixed coniferous plantation (MCP), eucalyptus plantation (EP), and mixed legume plantation (MLP). Comparing them with the regional climax community, i.e., monsoon evergreen broad-leaved forest (BF), all four plantations accumulated nearly the same pattern of EM during succession. EM was >50 % for soil minerals, light conditions, soil age, soil animals, and soil microbes. EM was about 25 % for soil pollen and 10 % for birds, soil seed bank, and plant species. The total EM value of the four plantations ranged from 50.96 to 52.54, which indicated that all four plantations were in the regional, natural trajectory of succession and between the early and medium successional stages. The results indicated that natural succession processes are unlikely to be accelerated by planting late-stage tree species without sufficient EM. The results also demonstrated that all four plantations were in positive successional trajectories, and the positive succession dynamics were greater in the MLP and MCP. We suggest that the entire natural succession trajectory be used to evaluate the restoration of a site and that the ultimate restoration target be divided into several milestones along the reference trajectory to monitor progress. Forest restoration may be accelerated by starting with a minimum dynamic unit supporting sufficient EM.  相似文献   

2.
To assesses the effect of geomorphology, topography, and vegetation changes on spatial pattern of soil organic carbon (C) and total nitrogen (N) in sand dunes, we used the quantitative methods to examine the spatial heterogeneity of vegetation cover, soil organic C, and total N in an 11-year naturally restored mobile dune (RMD11) and a 20-year naturally restored mobile dune (RMD20) that had been fenced to exclude grazing in Horqin Sandy Land, northern China. Our results showed that the vegetation cover, plant density, species number and diversity, soil organic C, and total N increased from RMD11 to RMD20 and increased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. Geostatistical analysis showed that the spatial structural variance accounted for the largest proportion of the total sample variance in vegetation cover, soil organic C, and total N in each dune plot. Calculated spatial autocorrelation ranges of vegetation cover, soil organic C, and total N increased from RMD11 to RMD20, indicating that longer time since vegetation restoration results in a more homogeneous distribution of vegetation cover, soil organic C, and total N in sand dunes. In addition, the spatial continuity of vegetation cover, soil organic C, and total N decreased from the 50 × 50-m plot (crest) to the 100 × 100-m plot (slope) in each dune. These results suggest that the spatial distribution of soil organic C and total N in sand dunes is associated closely with geomorphic position related to the dune crest and slope, relative elevation of sampling site, and vegetation cover. Understanding the principles of this relationship between them may guide strategies for the conservation and management of semiarid dune ecosystems.  相似文献   

3.
Vegetation regeneration in post-fire environments varies across the landscape of a burned area. Variations are caused by interacting factors, including soil properties, vegetation characteristics, hydrology, land management history, and burn severity. While many of these factors have been explored previously, few studies have investigated the combination of multiple factors. A time-series of the remotely sensed enhanced vegetation index data has been analyzed to estimate rates of regeneration across a burn in central Arizona. We used regression trees to evaluate post-fire vegetation response as a function of multiple factors. Regeneration was a function of elevation (likely a proxy for moisture availability), burn severity, pre-burn vegetation, and post-burn management activities. Both time-series vegetation data and regression trees were valuable tools for determining dominant interacting factors responsible for variations in post-fire regeneration. Evaluation of the time-series data and modeled post-fire vegetation permitted the interpretation of management actions across the burned area.  相似文献   

4.
This study investigates land cover change near the abandoned Pine Point Mine in Canada’s Northwest Territories. Industrial mineral development transforms local environments, and the effects of such disturbances are often long-lasting, particularly in subarctic, boreal environments where vegetation conversion can take decades. Located in the Boreal Plains Ecozone, the Pine Point Mine was an extensive open pit operation that underwent little reclamation when it shut down in 1988. We apply remote sensing and landscape ecology methods to quantify land cover change in the 20 years following the mine’s closure. Using a time series of near-anniversary Landsat images, we performed a supervised classification to differentiate seven land cover classes. We used raster algebra and landscape metrics to track changes in land cover composition and configuration in the 20 years since the mine shut down. We compared our results with a site in Wood Buffalo National Park that was never subjected to extensive anthropogenic disturbance. This space-for-time substitution provided an analog for how the ecosystem in the Pine Point region might have developed in the absence of industrial mineral development. We found that the dense conifer class was dominant in the park and exhibited larger and more contiguous patches than at the mine site. Bare land at the mine site showed little conversion through time. While the combination of raster algebra and landscape metrics allowed us to track broad changes in land cover composition and configuration, improved access to affordable, high-resolution imagery is necessary to effectively monitor land cover dynamics at abandoned mines.  相似文献   

5.
Desertification of shrub and grassland into pinyon-juniper woodland is occurring over much of the Colorado Plateau in the southwestern United States. As trees invade, they out-compete shrubs and grasses, increasing erosion rates and reducing infiltration of moisture into the soil. This has caused habitat problems for wildlife, and reduced forage for livestock. These impacts also affect the human communities that rely on ranching and tourism related to hunting. Past land use and management practices including heavy livestock grazing, fire suppression and introduction of exotic annual plants are believed to have led to current conditions. The Montrose office of the Bureau of Land Management has implemented an ecosystem-based program to reverse the desertification process on public land. The program is centered on detailed landscape objectives describing the desired vegetation mosaic on 360 000 ha of public land. The objectives outline proportions of plant seral stages and arrays of patch sizes for each planning unit. These objectives are based on priority management issues and the need to replicate a natural vegetation mosaic. Where the existing mosaic does not meet objectives, mechanical vegetation treatments and prescribed fire are used to create early and mid-seral patches on the ground. This restored vegetation pattern and type should be sustained over time through a natural fire regime and improved livestock management. Because many uncertainties exist, an adaptive management process is being used that allows mosaic objectives to be changed or processes modified where monitoring or scientific research indicate a need.  相似文献   

6.
Of the operations required for reclamation in arid and semi-arid regions, establishing vegetation entails the most uncertainty due to reliance on unpredictable rainfall for seed germination and seedling establishment. The frequency of successful vegetation establishment was estimated based on a land surface model driven by hourly atmospheric forcing data, 7 years of eddy-flux data, and 31 years of rainfall data at two adjacent sites in southern Arizona, USA. Two scenarios differing in the required imbibition time for successful germination were evaluated—2 or 3 days availability of sufficient surface moisture. Establishment success was assumed to occur if plants could germinate and if the drying front in the soil did not overtake the growth of seminal roots. Based on our results, vegetation establishment could be expected to fail in 32 % of years. In the worst 10-year span, six of ten plantings would have failed. In the best 10-year span, only one of ten was projected to fail. Across all assessments, at most 3 years in a row failed and 6 years in a row were successful. Funding for reclamation seeding must be available to allow reseeding the following year if sufficient amount and timing of rainfall does not occur.  相似文献   

7.
To study desertification processes relating to soil erosion, a climatological and altitudinal gradient from south to north was selected in Crete (Greece) and four locations were selected along the gradient. At the locations precipitation ranged from 1400 mm/year at the highest location to 400 mm/year at the lowest. All locations are affected by the actual land use: intensive grazing, small controlled fires, and abandoned agricultural terraces. Representative soil profiles were described in the field and analyzed in the laboratory, and rainfall simulation experiments in the field measured soil erosion over different soil surfaces and land uses. Data on physical and chemical properties were obtained from the soil profiles and soil hydrology, and erosion data were obtained from the rainfall simulation experiments. Soil aggregation was studied with samples taken from the soil in the rainfall simulation plots and special attention being paid to the aggregate size distribution and the water-stable microaggregation. The interaction between climatological conditions and land use seems to be the main factor controlling soil erosion. This paper describes how the expected erosion along the gradient (from the most humid to the driest site) can be affected and disturbed by specific processes derived from land use.  相似文献   

8.
Coal has been recognized as the most important source of energy generation in India. The present work was undertaken in order to assess the environmental impact of coal handling on peripheral land under near Kanika siding, Orissa, India. The data on suspended particulates in ambient air indicates an additional load of 50.5–108.7 μg/m3) to the ambient air due to coal loading which is equivalent to 50 × 365 to 108 × 365 kg/year. However, in the southern side (opposite to siding) covering the crop fields, the dust accumulation was maximum, i.e., 0.021 to 0.035 mg/cm2 area in comparison to 0.001 to 0.021 in the eastern side and 0.001 to 0.029 in western side of the crop fields. The physical and chemical properties of soil was also assessed. The results reveal that the coal loading has definite negative impact on the peripheral land near the site.  相似文献   

9.
The ecological water conveyance project (EWCP) in the lower reaches of the Tarim River provided a valuable opportunity to study hydro-ecological processes of desert riparian vegetation. Ecological effects of the EWCP were assessed at large spatial and temporal scales based on 13 years of monitoring data. This study analyzed the trends in hydrological processes and the ecological effects of the EWCP. The EWCP resulted in increased groundwater storage—expressed as a general rise in the groundwater table—and improved soil moisture conditions. The change of water conditions also directly affected vegetative cover and the phenology of herbs, trees, and shrubs. Vegetative cover of herbs was most closely correlated to groundwater depth at the last year-end (R?=?0.81), and trees and shrubs were most closely correlated to annual average groundwater depth (R?=?0.79 and 0.66, respectively). The Normalized Difference Vegetation Index (NDVI) responded to groundwater depth on a 1-year time lag. Although the EWCP improved the NDVI, the study area is still sparsely vegetated. The main limitation of the EWCP is that it can only preserve the survival of existing vegetation, but it does not effectively promote the reproduction and regeneration of natural vegetation.  相似文献   

10.
Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000–2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region’s area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds?=?330 %), land-use intensity (odds?=?103 %), low soil quality (odds?=?49 %), slope (odds?=?29 %), and salinity of the groundwater (odds?=?26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia.  相似文献   

11.
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin’s instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.  相似文献   

12.
The dynamics of vegetation coverage and associated driving forces are one of the key issues in global environmental change. In the study, taking Lijiang County as a case, the Normalized Difference Vegetation Index was used to quantify vegetation coverage change in mountain areas of Northwestern Yunnan, China, with the application of remote sensing data and GIS technologies. And associated driving forces of vegetation coverage change were also analyzed, with a focus on land use change and elevation. The results showed that there was high vegetation coverage with a significant increase in the whole county during 1986-2002. However, due to economic development and the implementation of environmental protection polices, vegetation coverage change in the county showed distinct spatial diversity, which mainly behaved as the increasing in the northwest of the county with low human activities, and the decreasing in the south with high economic development. The results also showed that as a restrictive factor, elevation was of great signification on the spatial distribution of vegetation coverage in a broad scale; while in the county level, it was land use that determined the vegetation coverage, since the change of vegetation coverage grades in the study area was mainly associated with the change of land use types.  相似文献   

13.
新疆北部沙漠边缘植被恢复可能性初探   总被引:2,自引:0,他引:2  
古尔班通古特沙漠边缘植被破坏严重,沙丘活化明显,是新疆干旱植被恢复的重点地区之一,一般缺乏地表水补充,其沙丘的水分状况便成为植被生存和恢复过程的关键条件,为探究古尔班通古特沙漠边缘植被恢复的可能性,在植物生长期内对流动沙丘和固定沙丘不同部位的水分状况进行了连续监测,结果表明:沙丘大多数层次含水量月变化与月降水量分布相一致;流动沙丘含水量从上部到下部依次升高;流动沙丘中部和下部稳定湿沙层处在距沙丘表面60 cm以下,且厚度超过100 cm,固定沙丘稳定湿沙层只存在于沙丘中部距沙丘表面60~150 cm内,其厚度不超过100 cm,在一般年份,该地区利用本地种进行植被恢复是可行的.  相似文献   

14.
Reforestation with black locust (Robinia pseudoacacia) is considered a successful technique that is often used for the reclamation of open-cast mine areas. An alternative reclamation technique could be the natural regeneration of vegetation with spontaneous grass species. In this study, we compared the concentrations of chemical and biochemical variables in soil samples taken under black locust canopy to those from sites covered by spontaneous grass vegetation (control samples) in a time sequence of spoil deposition (0–10 years), in order to assess which of the two reclamation techniques yields higher soil quality. Soil quality refers here to the ability of soils to function ecologically. This has a special interest since the main question for the restored soils is their capacity to perform a range of ecological functions under stress or disturbance. Furthermore, we aimed at identifying the effect of vegetation type on soil ecological succession. The effect of vegetation type on primary succession becomes apparent after 2 years of reclamation. R. pseudoacacia as a nitrogen-fixing plant enriched soil with organic and inorganic nitrogen and organic matter to a greater extent than the natural grasses. It also increased the amount of soil microbial biomass and the activity of alkaline phosphatase. However, the fact that black locust failed to enhance dehydrogenase activity and actually decreased the activity of urease, activities that represent specialized niche functions and therefore, are more vulnerable to stress or disturbance, suggests that the development of an indigenous grass community in combination with organic supplements might often be more appropriate for the reclamation of similar kinds of mine areas.  相似文献   

15.
Long-distance pipeline construction results in marked human disturbance of the regional ecosystem and brings into question the safety of pipeline construction with respect to the environment. Thus, the direct environmental impact and proper handling of such large projects have received much attention. The potential environmental effects, however, have not been fully addressed, particularly for large linear pipeline projects, and the threshold of such effects is unclear. In this study, two typical eco-fragile areas in western China, where large linear construction projects have been conducted, were chosen as the case study areas. Soil quality indices (SQI) and vegetation indices (VI), representing the most important potential effects, were used to analyze the scope of the effect of large pipeline construction on the surrounding environment. These two indices in different buffer zones along the pipeline were compared against the background values. The analysis resulted in three main findings. First, pipeline construction continues to influence the nearby eco-environment even after a 4-year recovery period. During this period, the effect on vegetation due to pipeline construction reaches 300 m beyond the working area, and is much larger in distance than the effect on soil, which is mainly confined to within 30 m either side of the pipeline, indicating that vegetation is more sensitive than soil to this type of human disturbance. However, the effect may not reach beyond 500 m from the pipeline. Second, the scope of the effect in terms of distance on vegetation may also be determined by the frequency of disturbance and the intensity of the pipeline construction. The greater the number of pipelines in an area, the higher the construction intensity and the more frequent the disturbance. Frequent disturbance may expand the effect on vegetation on both sides of the pipeline, but not on soil quality. Third, the construction may eliminate the stable, resident plant community. During the recovery period, the plant community in the work area of the pipeline is replaced by some species that are rare or uncommon in the resident plant community because of human disturbance, thereby increasing the plant diversity in the work area. In terms of plant succession, the duration of the recovery period has a direct effect on the composition and structure of the plant community. The findings provide a theoretical basis and scientific foundation for improving the environmental impact assessment (EIA) of oil and gas pipeline construction as it pertains to the desert steppe ecosystem, and provide a reference point for recovery and management of the eco-environment during the pipeline construction period.  相似文献   

16.
Drought-induced anomalies in vegetation condition over wide areas can be observed by using time-series satellite remote sensing data. Previous methods to assess the anomalies may include limitations in considering (1) the seasonality in terms of each vegetation-cover type, (2) cumulative damage during the drought event, and (3) the application to various types of land cover. This study proposed an improved methodology to assess drought impact from the annual vegetation responses, and discussed the result in terms of diverse landscape mosaics in the Mt. Kenya region (0.4° N 35.8° E?~?1.6° S 38.4° E). From the 30-year annual rainfall records at the six meteorological stations in the study area, we identified 2000 as the drought year and 2001, 2004, and 2007 as the normal precipitation years. The time-series profiles of vegetation condition in the drought and normal precipitation years were obtained from the values of Enhanced Vegetation Index (EVI; Huete et al. 2002), which were acquired from Terra MODIS remote sensing dataset (MOD13Q1) taken every 16 days at the scale of 250-m spatial resolution. The drought impact was determined by integrating the annual differences in EVI profiles between drought and normal conditions, per pixel based on nearly same day of year. As a result, we successfully described the distribution of landscape vulnerability to drought, considering the seasonality of each vegetation-cover type at every MODIS pixel. This result will contribute to the large-scale landscape management of Mt. Kenya region. Future study should improve this method by considering land-use change occurred during the long-term monitoring period.  相似文献   

17.
If the goal for managing rangelands is to achieve a balance between production and conservation, then monitoring is essential to detect change and apply corrective action. In some range-land areas of northern Australia, monitoring has detected a tilt in the production-conservation balance towards excessive production. How big is this imbalance? Can it shift back? Robust monitoring is needed to answer these questions. The aim is to know what to monitor, and where. For example, to detect changes caused by livestock on rangeland forage production and soil erosion, indicators linking grazing disturbances to landscape function are needed, that is, indicators that signal how well landscapes are capturing, concentrating, and utilizing scarce water, nutrient, and organic resources. Studies in Australia and the USA document that simple vegetation and soil patch attributes can be measured as indicators of the 'state of health' of landscape function. For example, field and remote sensing-based grazing studies in Australia document that landscapes with a high cover of perennial plant patches function effectively to capture runoff water and nutrients in sediments, whereas landscapes with a low cover of these patches do not — they are dysfunctional — as indicated by large patches of bare soil. Aerial videography is proving to be a robust technique for measuring indicators of landscape function such as small patches of vegetation and the extent of bare soil. These indicators typically have a sigmoidal response to grazing impacts. We illustrate that if these indicators are measured on monitoring sites established near the sigmoidal 'point of inflection’ then small changes in these indicators can be detected.  相似文献   

18.
In many European mountain regions, natural forest regrowth on abandoned agricultural land and the related consequences for the environment are issues of increasing concern. We developed a spatial statistical model based on multiple geophysical and socio-economic variables to investigate the pattern of natural forest regrowth in the Swiss mountain area between the 1980s and 1990s. Results show that forest regrowth occurred primarily in areas with low temperature sum, intermediate steepness and soil stoniness as well as close to forest edges and relatively close to roads. Model results suggest that regions with weak labor markets are favored in terms of land abandonment and forest regrowth. We could not find an effect of population change on land abandonment and forest regrowth. Therefore, we conclude that decision makers should consider non-linearities in the pattern of forest regrowth and the fact that labor markets have an effect on land abandonment and forest regrowth when designing measures to prevent agricultural land abandonment and natural forest regrowth in the Swiss mountains.  相似文献   

19.
Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha???1 year???1 in the year 1989 to 13.21 t ha???1 year???1 in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.  相似文献   

20.
Vegetation, sub-surface peat, and road dust were sampled near the Delong Mountain Transportation System (DMTS) haul road in northwest Alaska in 2005-2006 to document aluminum, barium, cadmium, lead, and zinc concentrations, and to evaluate bioaccessibility of these metals. The DMTS haul road is the transport corridor between Red Dog Mine (a large-scale, lead-zinc mine and mill) and the coastal shipping port, and it traverses National Park Service lands. Compared to reference locations, total metal concentrations in four types of vegetation (birch, cranberry, and willow leaves, and cotton grass blades/stalks) collected 25 m from the haul road were enriched on average by factors of 3.5 for zinc, 8.0 for barium, 20 for cadmium, and 150 for lead. Triple rinsing of vegetation with a water/methanol mixture reduced metals concentrations by at most 50%, and cadmium and zinc concentrations were least affected by rinsing. Cadmium and zinc bioaccessibility was greater in vegetation (50% to 100%) than in dust (15% to 20%); whereas the opposite pattern was observed for lead bioaccessibility (<30% in vegetation; 50% in dust). Barium exhibited low-to-intermediate bioaccessibility in dust and vegetation (20% to 40%), whereas aluminum bioaccessibility was relatively low (<6%) in all sample types. Our reconnaissance-level study indicates that clean-up and improvements in lead/zinc concentrate transfer activities have been effective; however, as of 2006, metal dispersion from past and/or present releases of fugitive dusts along the DMTS road still may have been contributing to elevated metals in surface vegetation. Vegetation was most enriched in lead, but because bioaccessibility of cadmium was greater, any potential risks to animals that forage near the haul road might be equally important for both of these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号