首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究泄爆面积比对泄爆门泄爆特性的影响,运用FLUENT软件建立煤矿井下1∶1巷道模型,在不同泄爆面积比的工况下对瓦斯爆炸传播规律及泄爆过程进行模拟,分析其变化特征和封闭泄爆效果。结果表明:S0工况条件下,压力和温度衰减后保持在0.29 MPa和565 K;S1~S4工况条件下,S4比S1,S2和S3达到封闭状态时间快780,260,50 ms,封闭时间最大节省70.91%;随着泄爆面积比的增大,封闭火区内的压力的峰值、峰值数量和达到封闭状态时间减小,泄爆能力增强;火焰速度峰值和衰减速率增大;温度的初始峰值、峰值数量和达到稳定状态时间减小,最大峰值反而增大,说明泄爆门对瓦斯爆炸火焰无抑制作用。  相似文献   

2.
使用FLACS软件DESC模块,对连接不同长度泄爆导管的除尘器泄爆模型进行了模拟,研究泄爆过程中除尘器内部以及泄爆方向上的超压与高温变化规律。研究结果表明,泄爆导管内部要比除尘器内部先达到最大爆炸压力,但压力值却要小于除尘器内的超压;在泄爆方向上,距泄爆口越远,导管内的爆炸压力也越小,且在泄爆导管末端压力下降的趋势明显加快;随着导管长度从1 m增加到6 m,除尘器与泄爆导管内部的最大爆炸压力也逐渐增大,在泄爆导管长6 m时,除尘器内部达到了81.8 kPa的最大爆炸压力;而对于不同长度的导管泄爆模型,泄爆导管内部都达到了2 000 K左右的高温,且导管越长,最大爆炸温度所能持续的时间也越长。  相似文献   

3.
泄压点火不同端管道内甲烷爆炸特性数值模拟   总被引:1,自引:0,他引:1  
结合气体爆炸传播机理,利用FLACS软件对泄压点火不同端两种方式(泄压口通径为25 mm和泄压口完全开放)下甲烷的爆炸过程进行数值模拟,获得了5种体积分数甲烷的爆炸特性参数,分析得出:两种不同泄压方式下,10%,9.5%,11%体积分数的甲烷爆炸特性变化趋势接近,7%,8%的甲烷较前三者有所延迟;5种甲烷在管道中心处的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值都随甲烷体积分数的增大而逐渐上升,在10%时达到最大,继续增加甲烷体积分数则出现下降趋势,最大爆炸压力时间变化趋势与其相反;管道中心处的爆炸产物浓度随着甲烷体积分数的增大而增大,与泄压方式无关;增大管道泄压口面积有利于爆炸压力以及爆炸高温高压气体的释放,使得各体积分数甲烷的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值均下降,到达最大爆炸压力的时间均增大。  相似文献   

4.
设计了球形容器内气体爆炸通过导管泄爆的试验系统,选用体积分数为10%(特殊说明除外)的甲烷和空气预混气体开展试验,研究了泄爆导管长度、容器容积、点火位置、气体体积分数、破膜压力等因素的影响。结果表明:泄爆导管越长,容器内的正压力峰值和负压力峰值越大;密闭爆炸时,球形容器的容积对爆炸压力峰值几乎无影响;不同容积球形容器内气体爆炸通过相同导管泄爆时(导管长度均为6 m,直径均为0.06 m),容积大的容器内的压力锋值为小容器压力值的3.3倍,且大容器内的压力上升速率也明显高于密闭爆炸的情况;有泄爆导管存在时,尾部点火容器内的压力峰值高于中心点火;泄爆导管的存在使得容器内的压力峰值高于直接泄爆时的压力峰值;无论有、无泄爆导管,容器内的压力峰值均随破膜压力增加而增加,但差值越来越小,说明导管的存在对容器爆炸泄爆过程的影响趋向缓和,但导管的存在总是阻碍了泄爆过程,增加了爆炸的严重程度,因此,在泄爆设计时要充分考虑导管的影响,适当提高容器自身的耐压强度。  相似文献   

5.
为揭示泄爆面特征参数对大尺度受限空间内天然气爆炸超压峰值结构的影响机制,基于典型房间特征,借助计算流体动力学技术研究不同泄爆面开启压力、开启时间以及泄压比等参数条件下室内天然气泄爆超压峰值结构的分布规律。研究结果表明:峰值Pb随开启压力和开启时间增加均呈线性增长趋势,而泄压比对Pb影响较小;峰值Pmfa与室内最大火焰面积有关,随开启压力、开启时间的增加和泄压比的减小,气体出流速度增大,进而产生更强的湍流,导致室内火焰面积和气体燃烧率增加,最终Pmfa增大;峰值Pext随泄压比增加呈快速降低趋势,同时开启压力和开启时间对Pext影响具有协同效应,共同促进Pext快速增加。  相似文献   

6.
为探究2种初始条件对天然气爆炸压力的影响特性,搭建球形容器泄压管道试验系统,通过在球形容器和泄压管道内布置压力传感器,研究不同点火位置(距球心0、2. 7、4. 7 m)和开口率(0%、25%、60%、100%)对天然气爆炸压力特性的影响。结果表明:当点火位置位于2. 7和4. 7 m时,球形容器内的峰值压力和升压速率显著大于0 m处点火的数值;设置泄压口明显降低了球形容器内的峰值压力,而随泄压口开口率增大,球内峰值压力降低幅度较小;容器密闭时,管道末端峰值压力在0 m处点火时最大,容器设有泄压口时,管道末端峰值压力在4. 7 m处点火时最大;在0 m处点火后管道末端的最大升压速率小于在2. 7和4. 7 m处点火后的速率。  相似文献   

7.
为了研究富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响,基于自主设计搭建的CH4燃烧诱导快速相变试验台,通过改变富氧系数和泄爆面积对CH4燃烧的压力振荡特性进行研究,分析了不同富氧系数E(0.21,0.3,0.4,0.6)及泄爆面积比(0,0.25,0.5,0.75,1)下CH4燃烧的压力峰值、到达压力峰值的时间及特征时间等参数的变化趋势。结果表明,随富氧系数增大,爆炸压力峰值逐渐增大。富氧系数E=0.21时,压力峰值低于相应的绝热压力,无压力振荡;当E=0.3时,压力峰值低于相应的绝热压力且伴随压力振荡。当E为0.4、0.6时,压力峰值高于相应绝热压力且伴随压力振荡;在泄爆条件下,随富氧系数增加,到达压力峰值的时间逐渐减小。通过分析不锈钢管道中的燃烧诱导快速相变现象,发现泄爆可以有效降低爆炸压力峰值,且随泄爆面积比增大,到达压力峰值的时间提前。  相似文献   

8.
对甲烷-空气预混气体在球形容器和球形管道连通容器内的泄爆过程进行实验研究,根据实验结果得出在较小的泄压面积时,与密闭容器爆炸实验比较,不能降低容器内的最大压力,反而会增大容器内的最大压力。通过实验结果分析,泄爆口安装在远离点火源的位置,当发生预混气体爆炸时能较好地降低容器内的最大压力,起到保护容器的作用。  相似文献   

9.
为探究刚/柔性障碍物对甲烷/空气泄爆行为的影响,采用自主搭建的连接容器(20 L球形容器连接4 m长爆炸管道和0.5 m长泄压管道)试验系统,研究不同阻塞比与厚度的刚性/柔性障碍物对甲烷/空气爆炸超压及泄爆火焰的影响。结果表明,在球形容器内,随阻塞比和厚度增加,峰值超压与最大升压速率相应增大,在阻塞率为80%和厚度为0.40 mm时峰值超压分别达到了190.4 kPa和273.5 kPa,最大升压速率分别为4.32 MPa/s和7.32 MPa/s。在管道末端,随柔性障碍物厚度增加,爆炸超压与升压速率同样大幅度提升。而随刚性障碍物阻塞比增加,峰值超压和最大升压速率先上升后下降。在设置刚性和柔性障碍物后,泄爆管道内均出现二次爆炸的现象,不同的是,二次爆炸的剧烈程度随柔性障碍物厚度增加而上升,而随刚性障碍物阻塞比增加呈现先增加后降低的趋势。  相似文献   

10.
为研究高密度聚乙烯(HDPE)粉尘燃爆及其泄爆特性,通过结合热重(TG)和差示扫描量热(DSC)分析高密度聚乙烯燃爆机理,利用20 L球形爆炸测试系统、最小点火能测定仪、最低着火温度测定仪等探究粉尘质量浓度对最小点火能(MIE)、最低着火温度(MIT)、最大爆炸压力(Pmax)和爆炸指数(Kst)的影响;在300 g/m3爆炸浓度及以上时,分析高密度聚乙烯泄放特性并探究在不同质量浓度下的泄放火焰特征。研究结果表明:随着HDPE粉尘质量浓度增加,最大爆炸压力先增加后减小、最低着火温度和最小点火能先减小后增加;泄爆压力峰值随着HDPE粉尘泄爆膜层数增加而升高,随着泄爆口径的增大而下降;在质量浓度为300 g/m3时,出现2次火焰长度较大值,且第2次泄放火焰更亮,燃烧面积更大;在质量浓度为400 g/m3时,产生2次火焰。研究结果可为预防聚乙烯粉尘爆炸事故以及减小相应事故损失提供参考。  相似文献   

11.
为研究弯管泄爆对气体爆炸的影响,基于试验测试和数值模拟(FLACs软件)分析管道泄爆状态下湍流的变化规律。结果表明:在试验条件下,封闭管道弯管内4.8 m处监测点湍流动能峰值为5 745.42 m2/s2,开口泄爆后该点湍流动能增幅为8.4%;当改变泄爆口位置时,弯道处监测点测得最大湍流动能相较于封闭管道该处最大湍流动能增幅为20.84%,弯管处湍流动能比直管最大增加了314%,影响因素主要为管道结构和泄爆口产生的排放和诱导作用;不同工况下内径0.125 m管道上泄爆口处最大湍流动能随着泄爆口位置和点火点之间的距离的增大而先增大后减小,二者的关系可拟合为一维高斯函数(Gauss Amp),拟合结果显示湍流动能最大为13 352.55m2/s2,此时泄爆口的孔口效应和流量限制都增大了湍流强度,导致更快的爆炸气流流出速度及更高的气体燃烧率,冲出气流携带的能量较大,对周围设施的危害影响最大。  相似文献   

12.
为研究泄爆夹层内障碍物位置对燃气泄爆效果的影响,以某大型商业综合体暗厨房为研究对象,考虑泄爆夹层中结构梁不同位置的泄爆效果,对暗厨房燃气爆炸的泄爆过程开展数值模拟研究。研究结果表明:在火焰没有到达泄爆窗前的爆炸初始阶段,障碍物对火焰结构和传播速度基本没有影响,当火焰进入泄爆夹层后,障碍物的存在可引发火焰加速现象;当障碍物距离泄爆窗1.7 m时,火焰加速现象较为明显,火焰最大传播速度可达591.5 m/s,此时厨房内压力峰值约2.9 MPa,约为没有结构梁情况下1.42倍;障碍物距离泄爆窗较近时,二者将协同影响火焰传播;厨房内压力峰值随着障碍物与泄爆窗距离的增大遵循增大-突降-增大的规律。研究结果可为商业综合体暗厨房泄爆设计提供一定理论依据。  相似文献   

13.
泄爆面积对柱形容器泄爆过程压力影响   总被引:2,自引:0,他引:2  
为了研究泄爆面积对柱形压力容器泄爆过程中压力变化的影响,采用经典流体力学软件FLU ENT在泄爆口直径分别为50、80、100mm情况下对容器内甲烷和空气混合气体泄爆过程进行了数值模拟,研究了不同情况下容器内压力发展变化规律以及爆炸流场参数分布。结果表明当泄爆压力为0.04MPa,泄爆口直径50mm时,泄爆口开启后压力容器内压力呈现继续上升趋势;泄爆口直径为80、100mm时,泄爆口开启后压力均立即下降,采用直径100mm泄爆口时压力下降速率更快,容器内压力降至环境压力所需时间更短。  相似文献   

14.
为提高对工业生产中连通结构装置内爆炸事故的抑制及防护水平,开展实验室试验,研究2个球形容器及管道组合成的连通容器中甲烷-空气混合气体泄爆过程。通过改变该装置上2个泄爆口的开合状态,观察单口及双口泄爆时容器内部的压力变化。结果表明:对于连通结构装置内的爆炸,泄爆有一定防护效果;单口泄爆时,连通容器内会出现压力震荡现象;双口泄爆时,体积较小容器内的压力曲线会出现双波峰现象。此外,在相同泄压比情况下,泄爆面积增大,连通容器内压力会显著降低。  相似文献   

15.
为了研究泄爆面不同开启压力对甲烷爆燃压力的影响,针对受限空间内甲烷/空气混合物爆燃传播过程,建立由水平管道构成的数值模型。研究结果表明:水平管道内存在爆燃压力积聚和泄放的双重效应,随着泄爆面开启压力的增加,测点爆燃压力峰值增大而且测点间爆燃压力峰值差异逐渐减小;在泄爆面不同开启压力条件下,泄压效应造成泄爆面及外部空气域爆燃压力衰减,随着泄爆面开启压力的增加,泄爆面开启时间近似呈线性增大;与水平管道内和泄爆面附近测点相比,水平管道外侧测点的爆燃压力峰值和振荡幅值均显著衰减,而且随着泄爆面开启压力的增加,测点爆燃压力峰值及测点间爆燃压力峰值差异均逐渐增大。  相似文献   

16.
为了研究管道内氢气的爆燃转爆轰及其抑制过程,对单个障碍物管道中氢气-空气混合物燃爆过程以及多级泄爆进行了二维数值模拟。基于氢气-空气19步详细化学反应动力学机理,以及k-ε湍流模型、概率密度函数输运方程和同位网格SIMPLE算法,采用计算流体软件Fluent进行模拟。结果表明:密闭管道无泄爆时,在距点火端1.5 m左右爆燃转为爆轰;泄爆口的位置对管道内氢气-空气预混气体的爆炸参数有重要影响,泄爆口位于管道中部时,能降低管道内爆轰超压,泄爆效果较好;位于管道中部单个泄爆口泄爆时,有效降低爆轰超压,管道中部设置2个泄爆口时,能通过压力和混合气体的泄放将管道中已经发生的爆轰衰减为爆燃;当有3个泄爆口泄爆时,管道中没有发生爆轰,达到良好的泄爆效果。  相似文献   

17.
为了考察惰性气体对容器泄爆收容过程的影响,对利用含有惰性气体的容器收容另一个容器内爆炸气体过程中的压力变化规律进行了试验研究。结果表明:收容容器中惰性气体存在时,起爆容器及收容容器内的压力峰值都较低,且泄爆膜破裂后,两容器内的压力上升速率都有所下降,惰性气体的存在能有效抑制泄爆收容过程中的爆炸强度,对起爆容器和收容容器都起到了一定的保护作用;收容容器内的惰性气体体积分数越高,两容器内的压力峰值越低,对两容器的保护作用越好;在一定范围内,随导管长度增加,起爆容器及收容容器内的压力峰值降低,而当导管长度超过某一特定值时,继续增加导管长度,两容器内的压力峰值变化不大;惰性气体的存在能有效抑制火焰的传播,降低火焰传播速率,达到抑制爆炸的目的。  相似文献   

18.
柱形压力容器开口泄爆过程数值模拟研究   总被引:4,自引:1,他引:3  
为研究柱形压力容器泄爆规律,采用经典流体力学软件FLUENT对典型的柱形压力容器泄爆过程进行数值模拟,分析从泄爆口开启到泄压结束时间段压力发展、火焰传播、气体流动及可燃气体浓度变化特性。结果表明:不同泄爆压力下容器内压力发展变化呈现不同特点,在较小泄爆压力情况下会出现压力再度上升的双峰现象。泄爆过程中产生的湍流沿泄爆口附近容器壁拉长火焰面,并加快燃烧速率。同时就容器内不同点火位置对爆炸强度影响进行研究,得出在泄爆压力为0.04 MPa时,底面点火对本柱形压力容器产生的最大升压速率约为中心点火最大升压速率的1.4倍。  相似文献   

19.
管道内瓦斯爆炸温度与压力峰值试验研究   总被引:1,自引:0,他引:1  
为分析瓦斯爆炸的火焰温度及压力峰值在管道中的传播规律,采用瓦斯管网爆炸测试系统进行试验,通过爆炸压力和爆炸火焰温度采集系统采集数据。在相同点火能量和点火位置的条件下,分析了体积分数对瓦斯爆炸的温度峰值和压力峰值的影响,及温度峰值和压力峰值随管道距离的变化规律。结果表明:当瓦斯体积分数低于9.5%时,温度峰值和压力峰值随瓦斯体积分数增大而增大;同一体积分数下,温度峰值最大值出现在最接近爆源的位置,并呈逐渐下降的趋势,接近爆源的温度峰值下降较明显,随管道延长,温度峰值的下降减慢且趋于平缓;温度峰值与传播距离近似呈三次函数关系;冲击波压力峰值随管道传播呈先上升后下降再上升的波动性变化。  相似文献   

20.
为研究苯、甲苯、二甲苯混合废气在三床蓄热式废气焚烧炉内部的燃烧过程,基于FLUENT软件建立典型的三床蓄热式废气焚烧炉的物理模型和数值模型,重点分析进气风量和混合可燃气体-空气摩尔占比对其内部压力变化规律的影响,以期可为其安全设计提供借鉴。研究结果表明:燃烧室内的温度变化与燃烧速度变化保持一致,可通过监测RTO燃烧室内的温度来定性评估气体燃烧速度,随着进气风量的增加,混合废气燃烧速度先升高后下降后再升高;从能源损耗和安全生产2个方面综合考虑,得出RTO运行的最佳进气风量为15 000 m3/h到30 000 m3/h,最佳的混合可燃气体-空气摩尔占比为0.15~0.2,这与RTO实际工况相符合,解释RTO装置内废气积聚导致爆炸事故的原因,燃烧过程中压力出现2次峰值超压,实际生产中需在2个时间节点多加防范。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号