首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical procedures for the simultaneous determination of residues of 2,4-D and dicamba from polyurethane foam plug air samplers, ethylene glycol impregnated glass-fiber filter paper dermal samplers, 1% sodium bicarbonate hand wash solution, and urine are presented. Residues were derivatized with diazomethane and quantitated using electron capture gas chromatography. Recoveries were greater than 80% at the limit of detection in all substrates. The limits of detection for both herbicides were 0.1 microgram/foam plug and 0.5 micrograms/filter paper, and in the urine, 1.7 micrograms/100 mL and 5.0 micrograms/100 mL for dicamba and 2,4-D, respectively.  相似文献   

2.
Thatch development in intensively managed turf sites may cause environmental concerns for greater sorption or leaching of applied chemicals in terrestrial ecosystems. To determine the adsorption potential of Carbaryl (1-Napthyl N-methylcarbamate), 2,4-D (2,4-dichloro-phenoxyacetic acid), and Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in turf ecosystems, composite thatch and underlying soil samples from three-and six-year-old stands of cool-season Southshore creeping bentgrass (Agrostis palustris Huds.) and warm-season Meyer zoysiagrass (Zoysia japonica Steud.) were collected. The samples were processed and analyzed for total organic carbon (COrg); extractable (CExt), humic (CHA) and fulvic acid (CFA); anthrone reactive nonhumic carbon (ARC) fractions; and CHA and CFA associated iron (Fe) contents. Pesticide adsorption capacity (Kf) and intensity (1/n), organic carbon partition coefficient (KOC) and Gibbs free energy change (deltaG) were calculated for thatch materials and the underlying soils using a modified batch/flow technique. Both bentgrass (BT) and zoysiagrass thatch (ZT) contained a greater concentration of CExt, CFA, CHA, and ARC than the respective soils (BS and ZS). The CExt, CFA, CHA, and ARC concentration was higher in BT compared with ZT. The BT contained a greater concentration of bound Fe in both CFA and CHA fractions than in BS, whereas ZT had more bound Fe in CHA fraction than in ZS. On average, the BT had a greater concentration of bound Fe in CExt, CFA, and CHA fractions than in the ZT. Among the pesticides, Carbaryl had higher Kf and 1/n values than 2,4-D and Triclopyr for both thatch and soil. Although the KOC and deltaG values of Carbaryl were higher in both BT and ZT than in the underlying soils, the KOC and deltaG values of 2,4-D were significantly higher in BS and ZS than in the overlying thatch materials. The 2,4-D and Triclopyr had higher leaching indices (LI) than Carbaryl for both BT and ZT materials than the respective soils. The Carbaryl, however, had a higher LI for soils than for thatch materials. Averaged across thatch materials and soils, COrg accounted for 96, 85, and 84% variations in Carbaryl, 2,4-D, and Triclopyr adsorption, respectively. Among the COrg fractions, lignin followed by CFA and CHA accounted for greater adsorption of pesticides, especially Carbaryl. The concentration of CHA and CFA bound Fe did not correlate with Kf and 1/n values of pesticides.  相似文献   

3.

Thatch development in intensively managed turf sites may cause environmental concerns for greater sorption or leaching of applied chemicals in terrestrial ecosystems. To determine the adsorption potential of Carbaryl (1-Napthyl N-methylcarbamate), 2,4-D (2,4-dichloro-phenoxyacetic acid), and Triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in turf ecosystems, composite thatch and underlying soil samples from three- and six-year-old stands of cool-season Southshore creeping bentgrass (Agrostis palustris Huds.) and warm-season Meyer zoysiagrass (Zoysia japonica Steud.) were collected. The samples were processed and analyzed for total organic carbon (COrg); extractable (CExt), humic (CHA) and fulvic acid (CFA); anthrone reactive nonhumic carbon (ARC) fractions; and CHA and CFA associated iron (Fe) contents. Pesticide adsorption capacity (K f ) and intensity (1/n), organic carbon partition coefficient (K OC ) and Gibbs free energy change (Δ G) were calculated for thatch materials and the underlying soils using a modified batch/flow technique. Both bentgrass (BT) and zoysiagrass thatch (ZT) contained a greater concentration of CExt, CFA, CHA, and ARC than the respective soils (BS and ZS). The CExt, CFA, CHA, and ARC concentration was higher in BT compared with ZT. The BT contained a greater concentration of bound Fe in both CFA and CHA fractions than in BS, whereas ZT had more bound Fe in CHA fraction than in ZS. On average, the BT had a greater concentration of bound Fe in CExt, CFA, and CHA fractions than in the ZT. Among the pesticides, Carbaryl had higher K f and 1/n values than 2,4-D and Triclopyr for both thatch and soil. Although the K OC and Δ G values of Carbaryl were higher in both BT and ZT than in the underlying soils, the K OC and Δ G values of 2,4-D were significantly higher in BS and ZS than in the overlying thatch materials. The 2,4-D and Triclopyr had higher leaching indices (LI) than Carbaryl for both BT and ZT materials than the respective soils. The Carbaryl, however, had a higher LI for soils than for thatch materials. Averaged across thatch materials and soils, COrg accounted for 96, 85, and 84% variations in Carbaryl, 2,4-D, and Triclopyr adsorption, respectively. Among the COrg fractions, lignin followed by CFA and CHA accounted for greater adsorption of pesticides, especially Carbaryl. The concentration of CHA and CFA bound Fe did not correlate with K f and 1/n values of pesticides.  相似文献   

4.
5.
Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.  相似文献   

6.
Light regime, riboflavin, and pH effects on 2,4-D photodegradation in water   总被引:1,自引:0,他引:1  
A laboratory study was conducted to determine the effects of light regime, riboflavin, and pH on photodegradation of 2,4-D in aqueous solution. In controlled-environment chamber experiments, riboflavin sensitized 2,4-D photolysis in a concentration-dependent manner under both attenuated UV (-UV) and enhanced UV (+UV) light regimes. The photolysis half-life of 2,4-D in solutions containing 10 mg L-1 riboflavin was 9.7 and 12.5 h when exposed to +UV and -UV, respectively, compared to no photolysis in the absence of riboflavin. In contrast, the extrapolated half-life of 2,4-D in solutions containing 2.5 mg L-1 riboflavin was 46 h under +UV and 72 h under -UV. The rate of 2,4-D photolysis in the presence of riboflavin increased under both light regimes as initial pH of the solution was decreased from 7.5 to 4.5. The half-life of 2,4-D in the presence of 10 mg L-1 riboflavin at pH 4.5 and exposed to +UV was 1.6 h. Lumichrome, a principal photoproduct of riboflavin, did not photosensitize 2,4-D. Concentrations of 2,4-dichlorophenol formed as a result of riboflavin-sensitized 2,4-D photolysis were higher under the -UV than the +UV regime. These results indicate that riboflavin concentration, solution pH, and light regime are interacting factors that may be manipulated to enhance rates of aqueous 2,4-D photolysis.  相似文献   

7.
Waste-water from the production of pesticide 2,4-D often contains high concentrations of 2,4-DCP and 2,6-D as the primary pollutants. Treatment of waste-water collected from a 2,4-D manufacturer was carried out using a technology combining acidification with hyper-crosslinked resin NDA-150 adsorption process. The overall process recovered 5.4 kg of 2,4-DCP and 0.6 kg of 2,6-D per cubic metre of the wastewater. The treatment reduced the concentration of 2,4-DCP in the wastewater from >6000 mg/L to <0.5 mg/L. The optimal operation parameters of adsorption and desorption were determined. The hyper-crosslinked resin adsorbent can be re-used after regeneration by NaOH aqueous solution. The recovered 2,4-DCP with a sufficiently high purity may be re-used in the production of 2,4-D. The technology may thus be applied to the treatment of waste-water for reclamation of chemicals for 2,4-D production while minimising the environmental nuisances and hazards that may be caused by these chemicals.  相似文献   

8.
The objective of this work was to evaluate absorption and translocation of the herbicide 2,4-D in plants of Memora peregrina. The herbicide 2,4-D was used alone with the formulation DMA 806 BR and associated with the herbicide picloram in the commercial product Padron. Levels of radioactivity on the treated leaves were determined in sample obtained after washing them with methanol and chloroform at different times after the application of the radiolabelled formulation (1, 2, 4, 8, 24, and 48 h). Translocation was evaluated by cutting plants between stem and root. The parts obtained were: root, stem, leaf treated, leaves above the leaf treated, leaves below the leaf treated, and leaf opposite of the leaf treated. These parts were weighted, dried, ground, burnt, and radioactivity in the samples was determined. The results suggest that the translocation of the radioactive herbicide 2,4-D was insignificant in plants of M. peregrina in the two treatments evaluated. Absorption of 14C 2,4-D in the treatment with DMA 806 BR and the mixture of DMA 806 BR plus Padron had the same behavior. These observations explain the inefficient control obtained with this herbicide in plant species under study.  相似文献   

9.
Paterlini WC  Nogueira RF 《Chemosphere》2005,58(8):1107-1116
The degradation of herbicides in aqueous solution by photo-Fenton process using ferrioxalate complex (FeOx) as source of Fe2+ was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, diuron and 2,4-D were used. The multivariate analysis, more precisely, the response surface methodology was applied to evaluate the role of FeOx and hydrogen peroxide concentrations as variables in the degradation process, and in particular, to define the concentration ranges that result in the most efficient degradation of the herbicides. The degradation process was evaluated by the determination of the remaining total organic carbon content (TOC), by monitoring the decrease of the concentrations of the original compounds using HPLC and by the chloride ion release in the case of diuron and 2,4-D. Under optimized conditions, 20 min were sufficient to mineralize 93% of TOC from 2,4-D and 90% of diuron, including oxalate. Complete dechlorination of these compounds was achieved after 10 min reaction. It was found that the most recalcitrant herbicide is tebuthiuron, while diuron shows the highest degradability. However, under optimized conditions the initial concentration of tebuthiuron was reduced to less than 15%, while diuron and 2,4-D were reduced to around 2% after only 1 min reaction. Furthermore, it was observed that the ferrioxalate complex plays a more important role than H2O2 in the photodegradation of these herbicides in the ranges of concentrations investigated.  相似文献   

10.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k 1), the growth-linked mineralization rate constant (k 2) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k 1 significantly decreased in sequence of A horizon (0.113% day?1) > B horizon (0.024% day?1) = C horizon (0.026% day?1) and in each soil horizon was greater than k 2. Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k 1 or k 2, except that k 1 was significantly greater in upper slopes (0.170% day?1) than in lower slopes (0.080% day?1). Neither k 1 nor k 2 was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

11.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k(1)), the growth-linked mineralization rate constant (k(2)) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k(1) significantly decreased in sequence of A horizon (0.113% day(-1)) > B horizon (0.024% day(-1)) = C horizon (0.026% day(-1)) and in each soil horizon was greater than k(2). Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k(1) or k(2), except that k(1) was significantly greater in upper slopes (0.170% day(-1)) than in lower slopes (0.080% day(-1)). Neither k(1) nor k(2) was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   

12.
I G Dubus  E Barriuso  R Calvet 《Chemosphere》2001,45(6-7):767-774
The sorption behaviour of a new wheat hybridising agent (clofencet, 2-4-(chlorophenyl)-3-ethyl-2,5-dihydro-5-oxopyridazine-4-carboxylic acid) was investigated in batch equilibrium experiments and compared to that of two other organic acids (2,4-D and salicylic acid). Sorption coefficients Kd for the three compounds were determined in 18 Cambisols and Ferralsols. Kd values for clofencet were 0.3-9.4 l/kg for Cambisols and 2.1-68 l/kg for Ferralsols. Sorption of clofencet was strongly related statistically to that of salicylic acid. Sorption of clofencet and salicylic acid decreased exponentially with increasing solution pH in Cambisols whereas a bell-shaped curve was obtained for the sorption of salicylic acid in Ferralsols. Sorption of 2,4-D (2,4-dichlorophenoxyacetic acid) was not statistically related to the pH of the different soils. Positively charged oxide surfaces were shown to play a significant role in the sorption of clofencet and salicylic acid. The use of simple correlation and multiple linear regressions suggested that the main sorption mechanisms of clofencet in soils were likely to be ligand exchange on oxide surfaces and, to a lesser extent, cation bridging. Differences in the sorption behaviour of clofencet/salicylic acid and 2,4-D might be attributed to the possibility of the two former compounds forming bidentate complexes with metals.  相似文献   

13.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 × 3 × 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0–5 and 5–15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k1) varied from 0.03 to 0.22 day? 1, while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k1 and total 2,4-D mineralizationwas significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 ug 1–1/ng? 1 mL1/n and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

14.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 x 3 x 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0-5 and 5-15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k(1)) varied from 0.03 to 0.22 day(- 1), while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k(1) and total 2,4-D mineralization was significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 microg (1-1/n)g(- 1) mL(1/n) and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

15.

Preharvest fruit-drop is a challenge to bayberry production. 2,4-D sodium as a commonly used anti-fruit-drop hormone on bayberry can reduce the yield loss caused by preharvest fruit-drop. The persistence and risk assessment of 2,4-D sodium after applying on bayberries were investigated. A method for determining 2,4-D sodium in bayberry was established based on LC-MS-MS. The average recoveries of 2,4-D sodium were at the range of 93.7–95.8% with relative standard deviations (RSDs) ranging from 0.9 to 2.8%. The dissipation rates of 2,4-D sodium were described using first-order kinetics, and its half-life ranged from 11.2 to 13.8 days. A bayberry consumption survey was carried out for Chinese adults for the first time. The safety assessments of 2,4-D sodium were conducted by using field trail data as well as monitoring data. Results showed that the chronic risk quotient and the acute risk quotient were calculated to be 0.23–0.59 and 0.02–0.05%, respectively, for Chinese adults, indicating low dietary risk for adults and children. In the end, the household cleaning steps were compared, and results showed that water rinsing for 1 min can remove 49.9% 2,4-D sodium residue, which provides pesticide removal suggestion for consumers.

  相似文献   

16.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

17.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

18.
Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.  相似文献   

19.
Wong PK 《Chemosphere》2000,41(1-2):177-182
The effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis by a freshwater green alga, Scenedesmus quadricauda Berb 614, were determined. These herbicides are the most often used in Hong Kong. Within the concentration range 0.02-200 mg/l, paraquat was more toxic than glyphosate and 2,4-D to the growth, photosynthesis and chlorophyll-a synthesis. The presence of 0.02, 0.2 or 2 mg/l of 2,4-D was not toxic to the alga. Algal growth, photosynthesis and chlorophyll-a synthesis were stimulated by the presence of low concentrations (0.02 or 0.2 and 0.02 mg/l, respectively) of 2,4-D and glyphosate. The presence of 0.02 or 0.2 mg/l of paraquat, 2 mg/l of glyphosate or 20 mg/l of 2,4-D was significantly inhibitory to the three test parameters, whereas the presence of 2 or more mg/l of paraquat, 20 or more mg/l of glyphosate or 200 mg/l of 2,4-D completely inhibited algal growth, photosynthesis and chlorophyll-a synthesis. The use of the alga as a bio-indicator of herbicide contamination in freshwater environment was discussed.  相似文献   

20.
In this study, we used primary cultures of fish hepatic cells as a tool for evaluating the effects of environmental contamination. Primary hepatic cell cultures derived from the subtropical fish Metynnis roosevelti were exposed to different concentrations (0.275, 2.75 and 27.5 μg L?1) of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Cellular respiratory activity was evaluated by polarography using three substrates: 0.5 M glucose, 0.5 M succinate and 0.5 M α-ketoglutarate. Significant changes were observed in cellular oxygen consumption with 0.5 M α-ketoglutarate. Even at low concentrations, 2,4-D and MCPA were potent uncouplers of oxidative phosphorylation. Primary cultures of M. roosevelti liver cells may provide a useful tool for the evaluation of environmental contaminant effects. A review of regulations regarding permitted concentrations of these herbicides is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号