首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary Organic Aerosol (SOA) formation during the ozonolysis of 3-methylcatechol (3-methyl-1,2-dihydroxybenzene) and 4-methylcatechol (3-methyl-1,2-dihydroxybenzene) was investigated using a simulation chamber (8 m3) at atmospheric pressure, room temperature (294 ± 2 K) and low relative humidity (5–10%). The initial mixing ratios were as follows (in ppb): 3-methylcatechol (194–1059), 4-methylcatechol (204–1188) and ozone (93–531). The ozone and methylcatechol concentrations were followed by UV photometry and GC–FID (Gas chromatography–Flame ionization detector), respectively and the aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted methylcatechol concentrations assuming a particle density of 1.4 g cm?3. The aerosol formation yield increases as the initial methylcatechol concentration increases, and leads to aerosol yields ranging from 32% to 67% and from 30% to 64% for 3-methylcatechol and 4-methylcatechol, respectively. Y is a strong function of Mo and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. These data are comparable to those published in a recent study on secondary organic aerosol formation from catechol ozonolysis. To our knowledge, this work represents the first investigation of SOA formation from the ozone reaction with methylcatechols.  相似文献   

2.
3.
The products and mechanism of secondary organic aerosol (SOA) formation from the OH radical-initiated reactions of linear alkenes in the presence of NOx were investigated in an environmental chamber. The SOA consisted primarily of products formed through reactions initiated by OH radical addition to the CC double bond, including β-hydroxynitrates and dihydroxynitrates, as well as cyclic hemiacetals, dihydrofurans, and dimers formed from particle-phase reactions of dihydroxycarbonyls. 1,4-Hydroxynitrates formed through reactions initiated by H-atom abstraction also appeared to contribute. Product yields and OH radical and alkoxy radical rate constants taken from the literature or calculated using structure–reactivity methods were used to develop a quantitative chemical mechanism for these reactions. SOA yields were then calculated using this mechanism with gas-particle partitioning theory and estimated product vapor pressures for comparison with measured values. Calculated and measured SOA yields agreed very well at high carbon numbers when semi-volatile products were primarily in the particle phase, but diverged with decreasing carbon number to a degree that depended on the model treatment of dihydroxycarbonyls, which appeared to undergo reversible reactions in the particle phase. The results indicate that the chemical mechanism developed here provides an accurate representation of the gas-phase chemistry, but the utility of the SOA model depends on the partitioning regime. The results also demonstrate some of the advantages of studying simple aerosol-forming reactions in which the majority of products can be identified and quantified, in this case leading to insights into both gas- and particle-phase chemistry.  相似文献   

4.
Protocols for the particulate matter (PM) National Ambient Air Quality Standards (NAAQS), and the Regional Haze Rule (RHR) give two complementary definitions for "natural" background airborne particle concentrations in the United States. The definition for the NAAQS derives largely from reported annual averages, whereas the definition for the RHR takes into account the frequency of occurrence of a range of visibility conditions estimated using fine particle composition. These definitions are simple, static representations of background or "unmanageable" aerosol conditions in the United States. An accumulation of data from rural-remote sites representing global conditions indicates that the airborne particle concentrations are highly variable. Observational campaigns show weather-related variations, including incidents of regional or intercontinental transport of pollution that influence background aerosol levels over midlatitude North America. Defining a background in North America based on long-term observations relies mainly on the remote-rural IMPROVE network in the United States, with a few additional measurements from Canada. Examination of the frequency of occurrence of mass concentrations and particle components provides insight not only about annual median conditions but also the variability of apparent background conditions. The results of this analysis suggest that a more elaborate approach to defining an unmanageable background could improve the present approach taken for information input into the U.S. regulatory process. An approach interpreting the continental gradients in fine PM (PM2.5) concentrations and composition may be warranted.  相似文献   

5.
6.
上海地区气溶胶特征及MODIS气溶胶产品在能见度中的应用   总被引:6,自引:0,他引:6  
利用气象站点能见度的历史资料和美国国家宇航局的MODIS卫星遥感手段获取10 km×10 km分辨率的气溶胶光学厚度(AOD)资料,建立二者的季节平均关系,得到了上海地区季节变化的气溶胶标高,并利用标高数据和AOD的季节分布,反演出上海地区季节变化的区域能见度分布,研究了近地层大气气溶胶与地面能见度的关系,分析了上海地区AOD的特征及能见度的时空分布特征.结果显示:上海地区冬春季平均能见度较差,外环线以内能见度在10 km以下;低能见度中心分布明显.  相似文献   

7.
8.
Kurt B. Carlsson 《Chemosphere》1989,18(9-10):1731-1736
The graph below shows the emitted dioxin - equivalents (Eadon) in grams per year in flue gas from municipal solid waste incinerators with various air pollution control methods for plants of capacity of 200 000 ton municipal solid waste (MSW) per year.

With optimized combustion and an effective air pollution control system the emissions of dioxins can be kept very low (concentrations below 0.1 ng/m3n).

With a very effective air pollution control system the total emission from all Swedish MSW-incinerators burning approximately 1.5 Mton/year will by 1990 be below 2 g/year - a drastic reduction from approximately 15 g today. As the total dioxin - equivalent emission to the environment in Sweden in the year 1987 was almost 500 g we see that municipal waste incineration really is on the way to solve their dioxin problem.  相似文献   


9.
The objective of this study is to investigate the air ventilation impacts of the so called “wall effect” caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD – FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio (VR) and the retention time (Tr) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a “wall” upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.  相似文献   

10.
In recent years, China and other emerging countries have been experiencing severe air pollution problems with high concentrations of atmospheric aerosol particles. Satellite measurements indicate that the aerosol loading of the atmosphere in highly populated regions of China is about 10 times higher than, for example, in Europe and in the Eastern United States. The exposure to extremely high aerosol concentrations might lead to important human health effects, including respiratory and cardiovascular diseases as well as lung cancers. Here, we analyze 52-year historical surface measurements of haze data in the Chinese city of Guangzhou, and show that the dramatic increase in the occurrence of air pollution events between 1954 and 2006 has been followed by a large enhancement in the incidence of lung cancer.  相似文献   

11.
12.
Brominated dibenzo-p-dioxin and dibenzofuran (BDD/BDF) isomers, specifically having from one to three halogens located in the 2,3,7,8-substituent positions, that are [13C]-labeled for use as analytical internal standards in mass spectrometric methods are not yet commercially available. Based upon the current availability of [13C]-labeled dibenzo-p-dioxin and dibenzofuran (DD/DF) precursors, we have developed a simple and efficient synthetic procedure which produces brominated congeners that are predominantly substituted in the 2,3,7, and 8-positions. The gas/solid reaction of vaporized precursor and surface-supported iron (III) bromide occurs rapidly (seconds) at temperatures ≥ 240°C and can provide total product yields in the range of 30 to 50 mole % for initial precursor amounts between 1 μg and 10 mg. In this paper we shall describe the utility of this approach to produce 5 μg quantities of [13C12]-2,7-dibromodibenzo-p-dioxin (27-DBDD) and [13C12]-2,8-dibromodibenzo-p-dioxin (28-DBDD).  相似文献   

13.
Based on in-situ aerosol size-distribution measurements and Mie scattering theory, total scattering coefficients and backscattering coefficients were calculated to derived wavelength dependent lidar ratio S for 355 nm and 532 nm. Effective radius and C/F ratio of aerosol are also calculated to study the relationships between lidar ratio and particle size dependences. The results show backscatter-related scattering properties are more sensitive to coarse mode particle than total scattering. The mean values of lidar ratio for 355 nm and 532 nm are 31.9 ± 6.2 sr and 40.5 ± 6.1 sr respectively, and S355 and S532 are linear correlated for S355 < 50 sr. S355 is highly correlated with effective radius of aerosol, and S532 is highly correlated with volume C/F ratio.  相似文献   

14.
15.
16.
The aim of this work is to study the correlation between ground-based measured aerosol optical depth (AOD) and TOMS Aerosol Index. For this reason, two AOD data-sets have been analysed. The first set of measurements has been obtained in a desert plateau in Namibia during July 1998, while the second one has been collected in Tito Scalo (Italy), a very small industrial zone surrounded by a large rural area, in June–July 2000. The AOD has been computed in the spectral range 400–870 nm with a resolution of 3 nm by measuring the direct solar irradiance. The used spectroradiometer is an Optical Spectrum Analyser, equipped with a continuously rotating diffraction grating. Successively, a correlation between the Earth Probe TOMS Aerosol Index, whose definition uses backscattered radiances at 331 and 360 nm, and the AOD in the visible range was searched for. A satisfying correlation was found, whose Pearson correlation coefficient R2 values range from 0.64 to 0.91.  相似文献   

17.
Visibility and aerosol concentration in urban air   总被引:3,自引:0,他引:3  
  相似文献   

18.
Vehicular traffic contributes significantly to the aerosol number concentrations at the local scale by emitting primary soot particles and forming secondary nucleated nanoparticles. Because of their potential health effects, more attention is paid to the traffic induced aerosol number distributions.The aim of this work is to explain the phenomenology leading to the formation and the evolution of the aerosol number distributions in the vicinity of a vehicle exhaust using numerical modelling. The emissions are representative of those of a light-duty diesel truck without a diesel particle filter. The atmospheric flow is modelled with a computational fluid dynamics (CFD) code to describe the dispersion of pollutants at the local scale. The CFD code, coupled to a modal aerosol model (MAM) describing the aerosol dynamics, is used to model the tailpipe plume of a vehicle with emissions corresponding to urban driving conditions. On the basis of available measurements in Schauer et al. (1999), three surrogate species are chosen to treat the semi-volatile organic compounds in the emissions.The model simulates the formation of the aerosol distribution in the exhaust plume of a vehicle as follows. After emission to the atmosphere, particles are formed by nucleation of sulphuric acid and water vapour depending strongly on the thermodynamic state of the atmosphere and on the dilution conditions. The semi-volatile organic compounds are critical for the rapid growth of nanoparticles through condensation. The semi-volatile organic compounds are also important for the evolution of primary soot particles and can contribute substantially to their chemical composition.The most influential parameters for particle formation are the sulphur fuel content, the semi-volatile organic emissions and also the mass and initial diameter of the soot particles emitted. The model is able to take into account the complex competition between nucleation, condensation and dilution, as well as the interactions among the different aerosol modes. This type of model is a useful tool to better understand the dynamics leading to the formation of traffic induced aerosol distributions. However, some key issues such as the turbulence in the exhaust plume and in the wake of the car, the magnitude and chemical composition of semi-volatile organic emissions and the possible nucleation of organic species need to be investigated further to improve our understanding of ultrafine particle formation.  相似文献   

19.
The aging processes of two representative natural aerosol, sea-salt and mineral aerosol, are investigated by using a box model equipped with a thermodynamic module (SCAPE). The model is shown to successfully describe the aging processes between the gas-phase anthropogenic pollutants (SO2, NOx, and NH3) and primary aerosol particles, including self-neutralization process/chlorine depletion in the sea-salt aerosol; formation/dissipation of carbonate and bicarbonate ions in the mineral aerosol; irreversible dynamic deposition of SO2 and H2SO4; and reversible thermodynamic distribution of inorganic volatile species. It is found that SO2 and H2SO4 tend to deposit onto the mode with the largest surface area, and that ammonia deposition is controlled by preceding SO2/H2SO4 deposition. During the SO2/H2SO4 deposition, chloride and carbonate are continuously released from the sea-salt and mineral dust particles, respectively. The findings by the model predictions are consistent with field and observational studies.  相似文献   

20.
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10–20% for our soils, which was consistent with the model's prediction, given an optimised “equivalent aggregate radius” for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号