首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
根据儿茶酚抑藻的剂量效应关系,研究了铜绿微囊藻在不同的投加剂量下,藻细胞的生理变化特征,采用扫描电子显微镜(SEM)观察细胞形貌,并测定了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、胞内磷酸酶(AKP)和还原型谷胱甘肽酶(GSH)活性以及还原型抗坏血酸(AsA)和丙二醛(MDA)浓度的变化。结果显示,儿茶酚使细胞表面出现凹陷或者孔洞,致使丙二醛(MDA)相对浓度增加,生物膜受损明显。儿茶酚剂量≤EC50(0.80 mg/L)时,SOD、CAT和AKP酶活性在1~2 d增加,随后下降,接近于对照样。儿茶酚剂量≥EC60(1.20 mg/L)时,SOD、CAT和AKP酶活性被显著抑制,直到完全低于对照样水平。GSH和AsA也表现出类似规律。  相似文献   

2.
Interspecific plant competition has been hypothesized to alter effects of early-season ozone (O3) stress. A phytometer-based approach was utilized to investigate O3 effects on growth and nutritive quality of Poa pratensis grown in monoculture and in mixed cultures with four competitor-plant species (Anthoxanthum odoratum, Achillea millefolium, Rumex acetosa and Veronica chamaedrys). Mesocosms were exposed during April/May 2000-2002 to charcoal-filtered air+25 ppb O3 (control) or non-filtered air+50 ppb O3 (elevated O3). Biomass production was not affected by O3, but foliar injury symptoms were observed in May 2002. Early-season O3 exposure decreased relative food value of P. pratensis by an average of 8%, which is sufficient to have nutritional implications for its utilization by herbivores. However, forage quality response to O3 was not changed by interspecific competition. Lack of injury and nutritive quality response in P. pratensis harvested in September may reflect recovery from early-season O3 exposure.  相似文献   

3.
Rice seeds (Tianyou, 3618) were used to examine the physiological and biochemical responses to phosphine exposure during germination. A control (0 mg m−3) and four concentrations of phosphine (1.4 mg m−3, 4.2 mg m−3, 7.0 mg m−3 and 13.9 mg m−3) were used to treat the rice seeds. Each treatment was applied for 90 min once per day for five days. The germination rate (GR); germination potential (GP); germination index (GI); antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and lipid peroxidation measured through via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seeds to phosphine exposure. These indicators were determined once per day for five days. The results indicated that the GR, GP and GI of the rice seeds markedly decreased after phosphine exposure. The changes in the activities of the antioxidant enzymes due to the phosphine exposure were also significant. The exposure lowered the CAT and SOD activities and increased POD activity in the treated rice seeds compared with controls. The MDA content exhibited a slow increase trend with the increase of phosphine concentration. These results suggest that phosphine has inhibitory effects on seed germination. In addition, phosphine exposure caused oxidative stress in the seeds. The antioxidant enzymes could play a pivotal role against oxidative injury. Overall, the effect of phosphine on rice seeds is different from what has been reported previously for insects and mammals.  相似文献   

4.
Few studies have investigated effects of increased background ozone in the absence of episodic peaks, despite a predicted increase throughout the northern hemisphere over the coming decades. In this study Leontodon hispidus was grown with Anthoxanthum odoratum or Dactylis glomerata and exposed in the UK to one of eight background ozone concentrations for 20 weeks in solardomes. Seasonal mean ozone concentrations ranged from 21.4 to 102.5 ppb. Ozone-induced senescence of L. hispidus was enhanced when grown with the more open canopy of A. odoratum compared to the denser growing D. glomerata. There was increased cover with increasing ozone exposure for both A. odoratum and D. glomerata, which resulted in an increase in the grass:Leontodon cover ratio in both community types. Carry-over effects of the ozone exposure were observed, including delayed winter die-back of L. hispidus and acceleration in the progression from flowers to seed-heads in the year following ozone exposure.  相似文献   

5.
Exposure-response data from open-top chamber (OTC) experiments are often directly applied to ambient air (AA) conditions. Because microclimatic conditions are modified and pollutant uptake by plants may differ (i.e. 'chamber effect'), there is concern about the influence of OTCs on these relationships. In addition, AA concentrations are often measured at a height which differs from canopy height and correction for the concentration gradient (i.e. 'gradient effect') is necessary. To quantify the relative contribution of plant characteristics and microclimatic factors to these effects, ozone uptake by horizontal leaves at the top of the canopy was calculated for plants grown in OTCs or AA by using a resistance analogy model. Data from an OTC experiment in 1996/97 for six species typical of productive grasslands were used. Ozone concentration inside OTCs was set equal to the concentration measured at a height of 3 m above ground (C(z(ref))) or at canopy height (C(0)). The gradient effect resulted in a 16-27% lower average C(0) than C(z(ref)), depending on species. The main determinant of the chamber effect was a systematic difference in leaf-to-air vapour pressure deficit between OTCs and AA which affected stomatal resistance and ozone uptake. In case of monocultures both effects were species-specific. In species mixtures the gradient effect differed between mixing ratios, whereas the chamber effect was species-specific. Because of the inter-specific difference in the chamber effect on ozone uptake, it is concluded that ozone effects on species mixtures differ systematically between OTCs and AA. The data underline that extrapolation of ozone flux-response relationships from OTC experiments must be based on canopy-level ozone concentrations, and that these relationships should be applied only to single species under microclimatic conditions similar to those prevailing in the experiment.  相似文献   

6.
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels.  相似文献   

7.
Lei Y  Korpelainen H  Li C 《Chemosphere》2007,68(4):686-694
We exposed the cuttings of Populus cathayana to Hoagland's solution containing four different manganese (Mn) concentrations (0, 0.1, 0.5 and 1mM) in a greenhouse to characterize the physiological and biochemical basis of Mn resistance in woody plants. Two contrasting populations of P. cathayana were used in our study, which were from the wet and dry climate regions in western China, respectively. The results showed that Mn treatments significantly decreased chlorophyll content and growth characteristics, including shoot height, basal diameter, biomass accumulation and total leaf area in the two populations. Mn treatments also significantly increased the levels of abscisic acid (ABA), polyamines and free amino acids especially proline (Pro), histidine (His) and phenylalanine (Phe) available for cellular signaling and heavy metal chelation. In addition, high Mn concentrations also caused oxidative stress indicated as the accumulation of hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) contents. On the other hand, there were different responses to Mn stress between the two contrasting populations. Compared with the dry climate population, the wet climate population accumulated more Mn in plant tissues especially in leaves; it showed lower tolerance index and more pronounced decrease in growth and chlorophyll contents. The wet climate population not only accumulated less ABA, putrescine and free amino acids, but also exhibited lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), thus suffering from more serious oxidative damage. Therefore, our results showed that the wet climate population was more susceptible to Mn stress than the dry climate population.  相似文献   

8.
The impact of ozone on forest ecosystems in Italy is monitored within the CONECOFOR programme. Ozone levels are measured in 30 plots using passive samplers. Response parameters used are: crown condition (transparency), BAI (basal area increment), and visible symptoms on spontaneous vegetation. Levels of AOT40 are above the concentration-based critical level of 5 ppmh in all sites, but the evidence of impact on forest vegetation remains limited. Ozone is a predictor of crown transparency residuals in beech sites over two consecutive years, but the variance explained amounts to less than 10%. The relation between BAI reduction and ozone is even less certain. Transparency and BAI are more readily explainable in terms of ecological conditions of the site and climate fluctuations. The interpretation of visible symptoms is doubtful, and is conditioned by the prevailing ecological factors in the areas.  相似文献   

9.
Stable carbon isotope ratios (delta(13)C) and leaf conductance (g(s)) were measured (2002, 2003) in Holcus lanatus L., Plantago lanceolata L. Ranunculus friesianus (Jord.), and Trifolium pratense L. at two levels of ozone (O(3)) with or without irrigation. In non-irrigated control plots, R. friesianus showed the least negative delta(13)C, and the smallest response to the treatments. Irrigation caused more negative delta(13)C, especially in H. lanatus. Irrespective of irrigation, O(3) increased delta(13)C in relationship to a decrease in g(s) in P. lanceolata and T. pratense. The strongest effect of O(3) on delta(13)C occurred in the absence of irrigation, suggesting that under field conditions lack of moisture in the top soil does not always lead to protection from O(3) uptake. It is concluded that in species such as T. pratense plants can maintain stomatal O(3) uptake during dry periods when roots can reach deeper soil layers where water is not limiting.  相似文献   

10.
Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O3), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O3, and technical O3-induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O3 stress. Data regarding the effect of EDU on plant ‘omics’ is highly insufficient and can form an important aspect of future EDU research.  相似文献   

11.
Responses of bush bean (Phaseolus vulgaris L.) lines 'S156' (O(3)-sensitive) and 'R123' (O(3)-tolerant), and cultivars 'BBL 290' (O(3)-sensitive) and 'BBL 274' (O(3)-tolerant) to ambient ozone (O(3)) were investigated during the 2001 and 2002 growing seasons. Seedlings were grown in pots inside open-top chambers (OTCs), with charcoal filtered (CF) and non-filtered (NF) ambient air, and in non-chambered ambient air (AA) plots. Growth parameters from individual plants were evaluated after harvests at the end of vegetative (V(4)) and reproductive (R(10)) growth phases. Results at V(4) indicated that CF did not provide additional benefits over NF in 'S156' in 2001 and 2002. In contrast, exposure to CF significantly impaired the growth of 'R123'. At the end of R(10), 'S156' produced more pods, most of which remained immature, and contained fewer seeds or were more frequently aborted, whereas pods produced in 'R123' reached pod maturation and senescence more consistently. Despite increased seed weights inside the OTCs, as observed in 'S156', differences between the two lines were insignificant when grown outside OTCs. Results from the 'BBL 290'/'BBL 274' pair, especially at V(4) phase, remained inconclusive. Plant morphological characteristics, variabilities in environmental conditions, and 'chamber effects' inside OTCs were influential in determining plant response to ambient O(3).  相似文献   

12.
The joint action of pyrethroids, lambda-cyhalothrin (LC) in combination with organophosphates, fenitrothione (FNT) on antioxidant defense system and lipid peroxidation biomarkers in rat testes was studied. The results suggest that incubation of testes homogenate with different concentrations of insecticide mixture for different time intervals significantly decreased the activity of antioxidant enzymes, like glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of reduced glutathione (GSH). In addition, a significant inhibition in transaminases (AST, ALT), phosphatases (AcP, AlP) activity and protein content were observed. On the other hand, FNT plus LC increased the cellular lipid peroxidation (LPO) level and the activity of lactate dehydrogenase (LDH). In conclusion, the use of insecticides mixture might cause marked oxidative damage in a concentration and time-dependent manner.  相似文献   

13.
Biochemical responses on the bases of activities of antioxidant enzymes; peroxidase, catalase, superoxide dismutase and glutathione reductase as well as estimations of total protein, lipid peroxidation and thiols in the form of protein, non-protein, glutathione and phytochelatin measured in growing seedlings of barley, Hordeum vulgare L., from Day 2 through 8 were compared following treatment of seeds for 2 h with oxidative agents, paraquat 5 x 10(-5), 10(-4), 10(-3) M, H2O2 10(-3), 5 x 10(-3), 10(-2) M and a metal salt, CdSO4 10(-5), 10(-4), 10(-3) M. A significant induction of all antioxidant enzymes along with an increase in the levels of protein, lipid peroxidation and glutathione was noted in response to oxidative stress, CdSO4 induced significant peroxidase and catalase activities but not superoxide dismutase. In a marked contrast from oxidative stress, CdSO4 decreased glutathione reductase activity as well as glutathione levels but increased phytochelatin level. The differential biochemical responses thus underlined the crucial involvement of glutathione and phytochelatin in the oxidative and metal-induced adaptive responses, respectively.  相似文献   

14.
One of the most frequently detected pharmaceuticals in environmental water samples is the anti-rheumatic drug, diclofenac. Despite its increasing environmental significance, investigations concerning the effects of this drug on the early developmental stages of aquatic species are lacking up to now. To determine the developmental toxicity and proteotoxicity of this drug on the growing fish embryos, eggs of zebrafish were exposed to six concentrations of diclofenac (0, 1, 20, 100, 500, 1000, and 2000 microg l(-1)) using DMSO as solvent. Early life stage parameters such as egg and embryo mortality, gastrulation, somite formation, movement and tail detachment, pigmentation, heart beat, and hatching success were noted and described within 48- and 96-h of exposure. After the 96-h exposure, the levels of stress proteins (hsp 70) were determined in both the diclofenac-treated and respective DMSO controls. Results showed no significant inhibition in the normal development until the end of 96 h for all exposure groups. However, there was a delay in the hatching time among embryos exposed to 1000 and 2000 microg l(-1). Late-hatched embryos (108 h) did not differ morphologically from normally hatched embryos. The mortality and average heart rate data did not show significant differences for all embryos in both diclofenac-treated and DMSO control groups. No significant malformations were likewise noted among all developing embryos throughout the exposure period. The levels of heat shock proteins in diclofenac-treated and control embryos did not differ significantly. DMSO control embryos, on the other hand, showed a concentration-dependent increase in hsp 70 levels. We suggest possible modulating effect of diclofenac in DMSO-triggered expression of stress proteins and this might have a possible repercussion on the use of DMSO as solvent in any toxicity assay. Since the present data indicate no significant embryotoxicity and proteotoxicity induced by diclofenac and due to the fact that the concentrations of diclofenac used in the present study is up to 2000-fold higher than the concentrations detected in the environment, it is unlikely that this drug would pose a hazard to early-life stages of zebrafish.  相似文献   

15.
In view of the present increasing trends of anthropogenic emissions of carbon dioxide (CO2) and sulphur dioxide (SO2) throughout the world, the present study was aimed at investigating the long-term influence of elevated concentrations of CO2 and SO2, singly and in combination on the physiological and biochemical characteristics of two cultivars of wheat (Triticum aestivum L. cv. Malviya 234 and HP1209). For this purpose, the plants were grown in open top chambers under field conditions and were fumigated with 600 ppm CO2, 0.06 ppm SO2 and 600 ppm CO2 + 0.06 ppm SO2 separately for 8 h daily (0800-1600 h) from germination to grain maturity. The individual treatment of SO2 advers#ely affected both the cultivars of wheat by reducing protein and starch contents. The respiration rate, total soluble sugars and total phenolics, however, increased in response to SO2. Stimulation of photosynthesis rate and reduction in stomatal conductance and transpiration rate were observed under CO2 treatment. Concentrations of total soluble sugars, starch and total phenolics increased in response to CO2 and CO2 + SO2 treatments. In combined treatment, CO2 modified the plant response to SO2 in both the cultivars. Elevated CO2 increased the photosynthesis rate under combined treatment. Higher levels of starch and soluble sugars under combined treatment provided extra carbon for SO2 detoxification. The pattern of intraspecific response of wheat to different treatments was more or less similar, but the magnitude of response differed significantly.  相似文献   

16.
Soybeans (Glycine max. cv. Williams) were grown to maturity in soil columns within polyvinyl pipe and placed in greenhouses with charcoal filtered (CF) and nonfiltered (NF) air. In each greenhouse plants were grown with and without soil moisture stress (SMS). Targeted soil water potentials at 0.25 m for no SMS and between 0.45 and 0.60 m for the SMS regime were -0.05 and -0.45 M Pa, respectively. The 7 h (1000-1700 h EDT) mean O(3) concentrations (June-October) were 0.039 and 0.009 ppm in NF and CF air, respectively. Ozone and SMS in combination were less than additive in their effects on growth of the plant top and bean yields. Plants in CF air had 70% greater top weight, 58% more bean yield and 43% more root dry weight than in NF air. Both the plant and the seed weight from plants without SMS weighed 35% more than with SMS. Total root length in CF air for plants with and without SMS averaged 1.84 and 1.98 km, respectively, as compared to 1.59 and 1.66 km for plants with and without SMS in NF air. The resultsare different, so far as the combined effects of O(3) and SMS on yield and root growth are concerned, than in a similar field study by Heggestad and co-workers primarily because of the presence of a water table in the field but absence of it in the columns, as planned, in this experiment. It is unique to use large soil columns to study root distribution and length as related to the effects of ambient O(3) alone, and its combination with SMS.  相似文献   

17.
Rametes of Norway spruce were fumigated with 30 ppb (nl litre(-1)) ozone above ambient level for 4 years in open-top chambers. They were grown under different light conditions, because some of the chambers received approximately 10% less light than the others. Samples from three age classes were analyzed for nitrogen and pigments using HPLC. It could be demonstrated that the ozone treatment reduced the concentration of chlorophyll (a) and (b), alpha- and beta-carotene, but increased the concentration of antheraxanthin. A significant decrease was found for the violaxanthin/antheraxanthin ratio following the ozone treatment. The concentration of all the pigments and of nitrogen were significantly related to the age classes, and a similar relationship was found for the light levels, except for antheraxanthin and total carotenoids. The ratio of chlorophyll a/b was only significantly related to the age classes.  相似文献   

18.
The suitability of metallothioneins (MT) in fish as biomarker of exposure to mercury has been questioned. Therefore, this study aimed at investigating the relationship between external levels of exposure, mercury accumulation and MT content, assessing species and tissue specificities. Two ecologically different fish species - Dicentrarchus labrax and Liza aurata - were surveyed in an estuary historically affected by mercury discharges. Total mercury (T-Hg) and MT content were determined in gills, blood, liver, kidney, muscle and brain. All tissues reflected differences in T-Hg accumulation in both species, although D. labrax accumulated higher levels. Regarding MT, D. labrax revealed a depletion in brain MT content and an incapacity to induce MT synthesis in all the other tissues, whereas L. aurata showed the ability to increase MT in liver and muscle. Tissue-specificities were exhibited in the MT inducing potential and in the susceptibility to MT decrease. L. aurata results presented muscle as the most responsive tissue. None of the investigated tissues displayed significant correlations between T-Hg and MT levels. Overall, the applicability of MT content in fish tissues as biomarker of exposure to mercury was uncertain, reporting limitations in reflecting the metal exposure levels and the subsequent accumulation extent.  相似文献   

19.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

20.

This study involves the monitoring of organic pollutants using transplanted mussels (Mytilus galloprovincialis) as bioindicator organisms and semipermeable membrane devices (SPMDs) as passive samplers. Mussels and SPMDs were deployed to marinas, shipyards and shipbreaking yards on the coastal area of Turkey and retrieved after 60 days. Polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticide (OCP) compounds were analysed with high-resolution GC-MS. Total PAH concentrations in SPMDs and mussels ranged from 200 to 4740 ng g sampler?1 and from 7.0 to 1130 ng g?1 in wet weight (ww). PCB and OCP concentrations in SPMDs changed between 0.04–200 and 4.0–26 ng g sampler?1, respectively. The highest PCB (190 ng g?1 ww) and OCP (200 ng g?1 ww) concentrations in mussels were measured at shipyard stations. A strong correlation was observed between the PAH and PCB concentrations in SPMDs and mussels. Enzyme assays (acetylcholinesterase, ethoxyresorufin-O-deethylase, glutathione S-transferase, glutathion reductase and carboxylesterase activities) were performed as biomarkers to reveal the effects of pollution on the mussels. There was no clear relationship found between the enzyme levels and the pollutant concentrations in mussels. Integrated biomarker responses were calculated to interpret the overall effect of pollutants.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号