首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (E Eo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the E Eo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.  相似文献   

2.
A kinetic model for the decolorization of C.I. Reactive Black 5 by the combination of hydrogen peroxide and UV radiation was developed based on experimental results and known chemical and photochemical reactions. The observed kinetic reaction coefficient was determined and correlated as a function of hydrogen peroxide concentration and UV intensity. The validity of the rate expression was tested experimentally in a parameterization study. The decolorization rate follows pseudo-first order kinetics with respect to dye concentration. The rate increases linearly with UV intensity and nonlinearly with increasing hydrogen peroxide concentration, going from a linear relationship at low H(2)O(2) concentrations to a maximum as hydrogen peroxide concentration continues to increase. The decolorization rate expression derived from the proposed reaction mechanism was reconciled with that used for correlating the experimental data.  相似文献   

3.
The decolorization of C.I. Acid Orange 7 (AO7), an anionic monoazo dye of acid class, was investigated using UV radiation in the presence of H2O2 in a tubular continuous-flow photoreactor as a function of oxidant and dye concentrations, reactor length and volumetric flow rate. The removal efficiency of AO7 depends on the operational parameters and increases as the initial concentration of H2O2 is increased but it decreases when the flow rate and initial concentration of AO7 are increased. The decolorization rate follows pseudo-first order kinetic with respect to the dye concentration. A rate equation for decolorization of AO7 was achieved by kinetic modeling. This model allows predicting concentration of AO7 in different photoreactor lengths for different volumetric flow rates and initial concentrations of H2O2 and AO7. The calculated results obtained from kinetic model were in good agreement with experimental data.  相似文献   

4.
UV/ozone degradation of gaseous hexamethyldisilazane (HMDS)   总被引:1,自引:0,他引:1  
Chou MS  Chang KL 《Chemosphere》2007,69(5):697-704
As a carcinogen, hexamethyldisilazane (HMDS) is extensively adopted in life science microscopy, materials science and nanotechnology. However, no appropriate technology has been devised for treating HMDS in gas streams. This investigation evaluated the feasibility and effectiveness of the UV (185+254nm) and UV (254nm)/O(3) processes for degradation of gaseous HMDS. Tests were performed in two batch reactors with initial HMDS concentrations of 32-41mgm(-3) under various initial ozone dosages (O(3) (mg)/HMDS (mg)=1-5), atmospheres (N(2), O(2), and air), temperatures (28, 46, 65 and 80 degrees C), relative humilities (20%, 50%, 65%, 99%) and volumetric UV power inputs (0.87, 1.74, 4.07 and 8.16Wl(-1)) to assess their effects on the HMDS degradation rate. Results indicate that for all conditions, the decomposition rates for the UV (185+254nm) irradiation exceeded those for the UV (254nm)/O(3) process. UV (185+254nm) decompositions of HMDS displayed an apparent first-order kinetics. A process with irradiation of UV (185+254nm) to HMDS in air saturated with water at temperatures of 46-80 degrees C favors the HMDS degradation. With the condition as above and a P/V of around 8Wl(-1), k was approximately 0.20s(-1) and a reaction time of just 12s was required to degrade over 90% of the initial HMDS. The main mechanisms for the HMDS in wet air streams irradiated with UV (185+254nm) were found to be caused by OH free-radical oxidation produced from photolysis of water or O((1)D) produced from photolysis of oxygen. The economic evaluation factors of UV (185+254nm) and UV (254nm)/O(3) processes at different UV power inputs were also estimated.  相似文献   

5.
Degradation rates and removal efficiencies of Metronidazole using UV, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied in de-ionized water. The four different oxidation processes were compared for the removal kinetics of the antimicrobial pharmaceutical Metronidazole. It was found that the degradation of Metronidazole by UV and UV/H2O2 exhibited pseudo-first order reaction kinetics. By applying H2O2/Fe2+, and UV/H2O2/Fe2+ the degradation kinetics followed a second order behavior. The quantum yields for direct photolysis, measured at 254 nm and 200-400 nm, were 0.0033 and 0.0080 mol E(-1), respectively. Increasing the concentrations of hydrogen peroxide promoted the oxidation rate by UV/ H2O2. Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The major advantages and disadvantages of each process and the complexity of comparing the various advanced oxidation processes on an equal basis are discussed.  相似文献   

6.
Chen QM  Yang C  Goh NK  Teo KC  Chen B 《Chemosphere》2004,55(3):339-344
A study on the destruction of 1,3-dinitrobenzene (1,3-DNB) in aqueous solution was carried out under ultraviolet (UV) irradiation alone and UV irradiation in the presence of hydrogen peroxide (H2O2). The combination of UV and H2O2 is significantly effective in degrading 1,3-DNB in terms of initial reaction rate and the mineralization of organic carbons. The photodegradation process can be influenced in certain extent by increasing the content of H2O2 and the acidity of reaction matrices. It was found that a variety of phenolic intermediates and inorganic acid were formed via hydroxyl radicals attacking the parent compound. The UV/H2O2 oxidation of 1,3-DNB was characterized by pseudo-zero order reaction for the degradation of 1,3-DNB with a 20 times enhanced rate constant of 1.36 x 10(-7) Ms(-1) and the initial rate constant was dependent on the initial concentration of 1,3-DNB.  相似文献   

7.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   

8.
比较了不同金属离子对罗丹明B的声化学降解作用,发现超声时加入Fe2 反应速率常数为单独超声波降解时的1.6倍,反应在前5 h内符合假一级动力学.研究了亚铁离子强化声化学对罗丹明B的降解作用,考察了Fe2 用量,溶液初始pH值,曝气,反应温度和超声功率等因素对脱色速率的影响.研究表明,酸性条件有利于染料的脱色;有曝气时的声化学脱色速率常数是单独超声时的6倍;声化学反应的活化能较低,反应在低温就可以进行;超声功率的改变对脱色速率的影响不大.UV-VIS扫描图谱显示,染料在225 nm和256 nm处的紫外吸收明显降低,初步探讨了罗丹明B的降解机理.  相似文献   

9.
The aim of the present study was to analyze and compare the efficacy of UV photodegradation with that of different advanced oxidation processes (O(3), UV/H(2)O(2), O(3)/activated carbon) in the degradation of naphthalenesulfonic acids from aqueous solution and to investigate the kinetics and the mechanism involved in these processes. Results obtained showed that photodegradation with UV radiation (254 nm) of 1-naphthalenesulfonic, 1,5-naphthalendisulfonic and 1,3,6-naphthalentrisulfonic acids is not effective. Presence of duroquinone and 4-carboxybenzophenone during UV irradiation (308-410 nm) of the naphthalenesulfonic acids increased the photodegradation rate. Addition of H(2)O(2) during irradiation of naphthalenesulfonic acids accelerated their elimination, due to the generation of ()OH radicals in the medium. Comparison between UV photodegradation 254 m and the advanced oxidation processes (O(3), O(3)/activated carbon and UV/H(2)O(2)) showed the low-efficacy of the former in the degradation of these compounds from aqueous medium. Thus, among the systems studied, those based on the use of UV/H(2)O(2) and O(3)/activated carbon were the most effective in the oxidation of these contaminants from the medium. This is because of the high-reactivity of naphthalenesulfonic acids with the *OH radicals generated by these two systems. This was confirmed by the values of the reaction rate constant of *OH radicals with these compounds k(OH), obtained by competitive kinetics (5.7 x 10(9) M(-1) s(-1), 5.2 x 10(9) M(-1) s(-1) and 3.7 x 10(9) M(-1) s(-1) for NS, NDS and NTS, respectively).  相似文献   

10.
Liao CH  Lu MC  Su SH 《Chemosphere》2001,44(5):913-919
The purpose of this study is to reveal the role of cupric ions as a natural water contaminant in the H2O2/UV oxidation of humic acids. Humic acids are naturally occurring organic matter and exhibit a strong tendency of complexation with some transition metal ions. Chlorination of humic acids causes potential health hazards due to formation of trihalomethane (THM). The removal of THM precursors has become an issue of public concern. The H2O2/UV process is capable of mineralizing humic acids due to formation of a strong oxidant, hydroxyl radicals, in reaction solution. Experiments were conducted in a re-circulated photoreactor. Different cupric concentrations (0-3.8 mg/l) and different pH values (4-9) were controlled to determine their effects on the degradation of humic acids, UV light absorbance at 254 nm, and H2O2. The presence of cupric ions inhibits humic mineralization and decreases the rate of destruction of humic acids which absorb UV light at 254 nm. On the other hand, the higher the cupric concentration, the lower the H2O2 decomposition rate. In the studied pH range, the minimum of total organic carbon (TOC) removal occurs at pH = 6 in the presence of 2.6 mg/l of cupric ions; both acidification (pH = 4) and alkaline condition (pH = 9) lead to a better removal of TOC. It is inferred from this study that the cupric-complexed form of humic acids is more refractory than the non-complexed one.  相似文献   

11.
采用UV/H2O2工艺去除水体中的喹诺酮类抗生素环丙沙星(CIP)。考察了溶液pH值、H2O2投加量以及水体基质对环丙沙星降解效率的影响,分析了降解产物的生成情况。研究表明,环丙沙星的降解符合拟一级反应动力学模型。降解速率受溶液pH值的影响,酸性及中性条件,有利于环丙沙星的降解。H2O2投加量的增大,使得降解速率逐渐增大,但速率增幅逐渐变缓;最佳H2O2/环丙沙星摩尔比为2 000。实际水体中存在的NOM、NO3-,促进了单独UV作用下,环丙沙星的降解。水体中的.OH焠灭剂,抑制了UV/H2O2联合作用下,环丙沙星的降解;实际水体中的光解速率常数低于超纯水中的光解速率常数。GC-MS分析表明,UV/H2O2工艺,使环丙沙星氧化降解生成氨基乙酸、丙二酸、丙三醇和对苯二甲酸等小分子有机物。  相似文献   

12.
利用壳聚糖对金属离子的吸附和螯合作用,通过简单的液相沉淀一还原过程一步原位合成了交联壳聚糖/Cu2O复合粒子。x射线衍射(XRD)和红外(FT—IR)测试结果表明,壳聚糖与Cu2O纳米微粒能有效复合。以活性艳红X-3B溶液为模拟印染废水,采用Langmuir-Hinshelwood假一级方程模拟交联壳聚糖/Cu2O复合粒子光催化脱色反应的动力学行为,从动力学角度系统研究染料初始浓度、反应体系pH、催化剂用量和反应体系气氛等因素对复合粒子可见光催化脱色反应速率的影响。结果表明,当染料溶液浓度较低时,光催化过程可视为假一级反应。降低活性艳红X-3B初始浓度和pH,增加催化剂用量和反应体系的含O2量都可显著增加光解脱色反应速率常数。相同条件下,与纯Cu2O相比,交联壳聚糖/Cu2O复合粒子对X-3B呈现出更好的吸附性和更高的可见光催化活性。  相似文献   

13.
采用O3、H2O2/O3及UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40min,溶液pH8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

14.
曹春华  肖玲 《环境工程学报》2014,8(4):1482-1486
利用壳聚糖对金属离子的吸附和螯合作用,通过简单的液相沉淀-还原过程一步原位合成了交联壳聚糖/Cu2O复合粒子。X射线衍射(XRD)和红外(FT-IR)测试结果表明,壳聚糖与Cu2O纳米微粒能有效复合。以活性艳红X-3B溶液为模拟印染废水,采用Langmuir-Hinshelwood假一级方程模拟交联壳聚糖/Cu2O复合粒子光催化脱色反应的动力学行为,从动力学角度系统研究染料初始浓度、反应体系pH、催化剂用量和反应体系气氛等因素对复合粒子可见光催化脱色反应速率的影响。结果表明,当染料溶液浓度较低时,光催化过程可视为假一级反应。降低活性艳红X-3B初始浓度和pH,增加催化剂用量和反应体系的含O2量都可显著增加光解脱色反应速率常数。相同条件下,与纯Cu2O相比,交联壳聚糖/Cu2O复合粒子对X-3B呈现出更好的吸附性和更高的可见光催化活性。  相似文献   

15.
Solar photocatalytic decolorization of methylene blue in water   总被引:8,自引:0,他引:8  
Kuo WS  Ho PH 《Chemosphere》2001,45(1):77-83
In this study, a photocatalytic decolorization system equipped with immobilized TiO2 and illuminated by solar light was used to remove the color of wastewater. To examine the decoloring efficiency of this system, photocatalytic decolorization of an organic dye such as methylene blue was studied as an example. The effects of light source, pH, as well as the initial concentration of dye were also investigated. It was observed that the solution of methylene blue could be almost completely decolorized by the solar light/TiO2 film process while there was about 50% color remaining with solar irradiation only. In addition, it was found that the decoloring efficiency of solution was higher with solar light irradiation than with artificial UV light irradiation, even though the artificial UV light source supplied higher UV intensity at 254 nm. The color removal rate of methylene blue with solar light irradiation was almost twice that of artificial UV light irradiation. This phenomena was mainly attributed to that some visible light range of solar light was useful for exciting the methylene blue molecules adsorbed on TiO2 film, leading to a photosensitization process undergoing and decoloring efficiency promoted. This solar-assisted photocatalytic device showed potential application for decoloring organic dyes in wastewater.  相似文献   

16.
Photooxidative decolorization of four textile dyestuffs, C.I. Acid Orange 7 (AO7), C.I. Acid Orange 8 (AO8), C.I. Acid Orange 52 (AO52) and C.I. Acid Blue 74 (AB74), by UV/H2O2 was investigated in a laboratory scale photoreactor equipped with a 15 W low pressure mercury vapour lamp. The decolorization of the dyes was found to follow pseudo-first-order kinetics, and hence the figure-of-merit electrical energy per order (E(Eo)) is appropriate for estimating the electrical energy efficiency. The E(Eo) values were found to depend on the concentration of H2O2, concentration and basic structure of the dye. This study shows that these textile dyes can be treated easily and effectively with the UV/H2O2 process with E(Eo) values between 0.4 and 5 kW h m-3 order-1, depending on the initial concentrations of dyes and H2O2. The kinetic model, based on the initial rates of degradation, provided good prediction of the E(Eo) values for a variety of conditions.  相似文献   

17.
袁芳  胡春  李礼 《环境工程学报》2011,5(9):1968-1972
采用UV/2O2工艺去除水体中的喹诺酮类抗生素环丙沙星(CIP)。考察了溶液pH值、2O2投加量以及水体基质对环丙沙星降解效率的影响,分析了降解产物的生成情况。研究表明,环丙沙星的降解符合拟一级反应动力学模型。降解速率受溶液pH值的影响,酸性及中性条件,有利于环丙沙星的降解。2O2投加量的增大,使得降解速率逐渐增大,但速率增幅逐渐变缓;最佳2O2/环丙沙星摩尔比为2 000。实际水体中存在的NOM、NO-3,促进了单独UV作用下,环丙沙星的降解。水体中的?OH焠灭剂,抑制了UV/2O2联合作用下,环丙沙星的降解;实际水体中的光解速率常数低于超纯水中的光解速率常数。GC-MS分析表明,UV/2O2工艺,使环丙沙星氧化降解生成氨基乙酸、丙二酸、丙三醇和对苯二甲酸等小分子有机物。  相似文献   

18.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

19.
Y S Shen  Y Ku 《Chemosphere》2002,46(1):101-107
The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.  相似文献   

20.
The removal of trans-chlordane (C(10)H(6)Cl(8)) from aqueous solutions was studied using UV, UV/H(2)O(2), UV/H(2)O(2)/Fe(2+), UV/TiO(2), or UV/TiO(2)/H(2)O(2) treatment using either UV/Vis blue lamps or UVC lamps (254 nm). H(2)O(2), FeSO(4) and TiO(2) were added at 1700, 456, and 2500 mgL(-1), respectively. trans-Chlordane was not significantly removed in non-irradiated controls and in samples irradiated with UV/Vis. It was also not removed in the absence of surfactant Triton X-114 added at 250 mgL(-1). In the presence of the surfactant, trans-chlordane concentration was reduced by 95-100% after 48 h of UVC and UVC/H(2)O(2) treatments and 70-80% after UVC/H(2)O(2)/Fe(2+), UVC/TiO(2) and UVC/H(2)O(2)/TiO(2) treatments. Based on these results, UVC, UVC/H(2)O(2) and UVC/TiO(2) treatments were further investigated. UVC treatment supported the highest pollutant removal (100% in 48 h), dechlorination efficiency (81% in 48 h), and detoxification to Lepidium sativum seed germination and activated sludge respiration although irradiated samples remained toxic to Chlorella vulgaris. Biodegradation of the UVC irradiated samples removed the source of algae toxicity but this could not be clearly attributed to the removal of trans-chlordane photoproducts because the surfactant interfered with the chemical and biological assays. Evidence was found that trans-chlordane was photodegraded through photolysis causing its successive dechlorination. trans-Chlordane removal was well described by a first order kinetic model at a rate of 0.21±0.01h(-1) at the 95% confidence interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号