首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing concentrations of nitrogen dioxide pollution in rural Wales   总被引:2,自引:0,他引:2  
Monitoring of nitrogen dioxide pollution was carried out in rural environments throughout Wales during a 1-year survey to quantify any changes in background concentrations and distribution of the pollutant since an earlier survey in 1986. There were 23 sites in the present survey of which 16 had been monitored during the 1986 survey. The remaining 7 sites were based on moorland in mid-Wales within map squares for which critical loads for soil acidification are expected to be exceeded by the year 2005. All sites were chosen so as to be remote from major local sources of NO(2) and the values obtained were deemed to be minimum concentrations for the different regions. Measurements were made using diffusion tubes which aimed to provide mean concentrations of NO(2) for 2-week exposure periods. Concentrations of NO(2) were found to be higher in the winter months for most sites and this is probably related to a greater use of fossil fuels for heating buildings at this time of year. The exception was the high concentrations of NO(2) in May and June for several sites in North Wales, and in July and August for a site on Mount Snowdon. These high summer concentrations in North Wales are thought to be related to increased traffic associated with tourism. It is apparent that there has been a substantial increase in rural concentrations of NO(2) throughout Wales since the earlier survey of 1986. As an average of all 16 sites used in both surveys, there was a 53% increase in the annual mean concentration of NO(2). Also, it is evident that, since 1986, there has been a substantial increase in the area of south-eastern Wales which has a background level in excess of 10 ppb NO(2) and a notable reduction in land area with concentrations below 6 ppb NO(2) as an annual mean concentration. The possible future impact of increasing rural concentrations of NO(2) on Welsh vegetation is discussed with references to estimates of critical levels of NO(2) for adverse effects on plants.  相似文献   

2.
Ambient ozone, sulfur dioxide, and nitrogen dioxide data collected at 11 rural gaseous air pollution monitoring stations located throughout the Federal Republic of Germany (FRG) were characterized to provide a basis for investigating the effect these air pollutants may have on forest decline. For any given year, with the exception of the Waldhof site, the ozone monitoring sites did not experience more than 50 occurrences of hourly mean concentrations equal to or above 0.10 ppm. In most cases, the number of occurrences equal to or above 0.10 ppm at the FRG ozone monitoring sites was below the number experienced at a rural forested site located at Whiteface Mountain, New York. Several of the FRG monitoring sites experienced a large number of occurrences of hourly mean ozone concentrations between 0.08 and 0.10 ppm. Hof, Selb, Arzberg, and Waldhof experienced several occurrences of elevated levels of sulfur dioxide concentrations. The nitrogen dioxide 24-h mean concentrations were low for all sites. Because the 24-h mean data may mask the occurrence of a few high concentration events, it is not known if any of the sites that monitored nitrogen dioxide experienced short-term elevated concentrations. To gain further insight into the possible effect of pollutant mixtures on vegetation, future efforts should involve characterizing the timing of multi-pollutant exposures.  相似文献   

3.
Goals, Scope and Background Among other substances, sulphur dioxide (SO2), nitric oxide (NO) and nitrogen dioxide (NO2) are parameters which are routinely measured to describe basic air quality. Organic extracts of airborne particulate matter contain mutagenic chemical compounds of different origins. The aim of the study was to find correlations between routine monitoring data and mutagenic activity of organic extracts of simultaneously drawn samples.Methods Specimens were collected over a period of two years at 8 sampling sites in south-west Germany. Simultaneously, concentrations of NO, NO2, and SO2 were measured on-line within the framework of the official air monitoring network of Baden-Württemberg, Germany. Dust samples were collected for biotesting using high volume air samplers equipped with glass fibre filters. After sampling was completed, filters were extracted and samples were prepared for biological testing. Mutagenic activity was tested by means of the plate incorporation assay (Ames test) using S. typhimurium TA98 and TA100 tester strains. During the first year of the study, all tests have been performed with and without metabolic activation. Additionally, a series of tests has been performed in parallel with TA98 and TA98NR.Results and Discussion Comparison of Ames test data obtained with and without metabolic activation indicates no statistically significant difference between both methods. Therefore, during the second year of the study, all tests have been performed without metabolic activation. Average yearly activities at the sampling sites were between 1 und 27 Revertants per m3 (Rev/m3). High activities were preferably found at congested sites (Karlsruhe, up to 95 Rev/m3). However, peak values of over 100 Rev/m3 were found in other places where pollution by traffic is significantly lower. The reason for these high level values is not evident. Tests performed using TA98NR tester strain indicate a significant share (average 31%) of compounds requiring activation by nitroreductase for mutagenic activity. Average mutagenic activity can be correlated to routine monitoring parameters. Comparison of averaged data for particular sampling sites indicates significant correlation between nitric oxide and mutagenic activity in TA98 (r2=0.90), while correlation between nitrogen dioxide (0.84) or sulphur dioxide (0.52) and mutagenic activity is weaker. For TA100, correlations are generally weaker than for TA98. Comparison of data for mutagenic activity and routine monitoring data of distant sites being sampled simultaneously shows parallel behaviour.Conclusions Results from this study show that mutagenic activity can be compared to seasonal and local variations of gaseous indicator air pollutants. Tester strain TA98 generally shows the best correlations. Although pollution by particle-bound mutagenic substances is significantly higher during the cold season than during summer on average, mutagenic activity of airborne dust is not a continuous effect. During winter, peak levels as well as low pollution periods can occur. Even during winter time mutagenic activity can reach very low levels typical for summertime. Comparison of results for distant sampling sites where samples have been collected simultaneously indicate that “classical” indicators of air pollution and bacterial mutagenicity of organic extracts from airborne particulate matter are influenced by connected effects. Seasonal trend of mutagenic activity, in particular, is similar to the concentrations of nitrogen oxide. NO is a strong indicator for vehicle exhaust gases. It is concluded that the average mutagenic activity at particular sites can be estimated using NO concentrations as an indicator.  相似文献   

4.
Nitrogen dioxide concentrations have been measured at rural sites in the United Kingdom and have revealed a marked spatial variation. The annual mean NO2 concentration varies from approximately 1 microg Nm-3 in Northern Ireland to approximately 7 microg Nm-3 in East Anglia. Though the temporal resolution of the diffusion tube method is limited by exposure periods of 2-4 weeks, it was possible to detect a marked seasonal variation in NO2 concentration at all sites, with higher values in the winter than in the summer. This is in contrast to the small seasonal variation previously observed at sites in London. Sulphur dioxide concentrations were measured daily using a bubbler method and, if expressed in terms of mass of sulphur and nitrogen, the SO2 and NO2 annual mean concentrations were similar. This is in contrast to an S/N ratio of greater than 3 in total UK emissions of SO2 and NOx. It seems likely that this difference is due to a combination of the different spatial distributions and heights of emissions of SO2 and NOx, the influence of local sources of NOx, and the smaller S/N ratio in Continental European emissions.  相似文献   

5.
Foliar phenol concentrations (total and simple phenols) were determined in Aleppo pine (Pinus halepensis Mill.) needles collected in June 2000, from 6 sites affected by various forms of atmospheric pollutants (NO, NO(2), NO(x), O(3) and SO(2)) monitored during two months. Results show an increase in total phenol content with exposure to sulphur dioxide and a reduction with exposure to nitrogen oxide pollution. p-Coumaric acid, syringic acid and 4-hydroxybenzoic acid concentrations increase with exposure to nitrogen oxide pollution, whereas gallic acid and vanillin decrease in the presence respectively of sulphur dioxide and ozone. This in situ work confirms the major interest of using total and simple phenolic compounds of P. halepensis as biological indicators of air quality.  相似文献   

6.
Measurements of 1-month concentrations of NO(2) and SO(2) were carried out in the period from May 1993 to April 1994 in 147 points in 30 major cities of Poland and in 31 points in rural areas. The measurement points were divided into five classes representing: centres of cities, residential areas, industrial areas, traffic locations and rural areas. Passive samplers were prepared in one laboratory, mailed to local laboratories for sampling and then returned for analysis. The same samplers were used for collecting both NO(2) and SO(2). Analyses for NO(2) absorbed as nitrite were made spectrophotometrically after reaction with Saltzman reagent. Sulphur dioxide was determined as sulphate with ion chromatography. The consistency of data allowed comparison of levels of air pollution in different cities and the production of maps of spatial distribution of NO(2) and SO(2) in rural areas of Poland.  相似文献   

7.
Continuous measurements of particle number (PN), particle mass (PM10), and gaseous pollutants [carbon monoxide (CO), nitric oxide (NO), oxides of nitrogen (NOx), and ozone (O3)] were performed at five urban sites in the Los Angeles Basin to support the University of Southern California Children's Health Study in 2002. The degree of correlation between hourly PN and concentrations of CO, NO, and nitrogen dioxide (NO2) at each site over the entire year was generally low to moderate (r values in the range of 0.1-0.5), with a few notable exceptions. In general, associations between PN and O3 were either negative or insignificant. Similar analyses of seasonal data resulted in levels of correlation with large variation, ranging from 0.0 to 0.94 depending on site and season. Summertime data showed a generally higher correlation between the 24-hr average PN concentrations and CO, NO, and NO2 than corresponding hourly concentrations. Hourly correlations between PN and both CO and NO were strengthened during morning rush-hour periods, indicating a common vehicular source. Comparing hourly particle number concentrations between sites also showed low to moderate spatial correlations, with most correlation coefficients below 0.4. Given the low to moderate associations found in this study, gaseous co-pollutants should not be used as surrogates to assess human exposure to airborne particle number concentrations.  相似文献   

8.
Nguyen HT  Kim KH 《Chemosphere》2006,65(2):201-212
The concentration data of nitrogen dioxide (NO(2)), obtained from four different types of air quality monitoring (AQM) stations in Korea (i.e., urban traffic (A), urban background (B), suburban background (C), and rural background (D)), were explored to evaluate the fundamental facets of its distribution and behavior. As there are many distinctions between these four types of AQM stations, the observed NO(2) values were clearly distinguished from each other. It is found that the average NO(2) concentrations from all A stations exhibit notably high values within the range of 24.8 (Gwangju) to 54.6 ppb (Seoul), while those of all B stations change from 19.6 (Ulsan) to 34.7 ppb (Seoul). Similarly, large differences were also observed from NO(2) values measured between C and D type stations. The NO(2) values of the former were from 16.5 (Jeonbuk) to 30.2 ppb (Gyunggi), while the latter from 4.3 (Gyeongbuk) to 8.7 ppb (Gyunggi). Although their annual patterns are rather complicated to explain, the results by and large reflected the changes in the conditions of the surrounding environment. When the results are compared across seasons, most stations (A, B, and D types) tend to exhibit their maximum values in the winter followed by spring, fall, and summer. The results of this study confirm that the distribution patterns of NO(2) are fairly sensitive enough to reflect the basic characteristics of its source processes in association with such factors as the intensity of anthropogenic activity or population density.  相似文献   

9.
Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Guba?ówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical for this part of Europe and below the expected levels of phytotoxicity.  相似文献   

10.
Effect of air pollution on peri-urban agriculture: a case study   总被引:10,自引:0,他引:10  
Peri-urban agriculture is vital for the urban populations of many developing countries. Increases in both industrialization and urbanization, and associated air pollution threaten urban food production and its quality. Six hour mean concentrations were monitored for SO(2), NO(2) and O(3) and plant responses were measured in terms of physiological characteristics, pigment, biomass and yield. Parameter reductions in mung bean (Vigna radiata), palak (Beta vulgaris), wheat (Triticum aestivum) and mustard (Brassica compestris) grown within the urban fringes of Varanasi, India correlated directly with the gaseous pollutants levels. The magnitude of response involved all three gaseous pollutants at peri-urban sites; O(3) had more influence at a rural site. The study concluded that air pollution in Varanasi could negatively influence crop yield.  相似文献   

11.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

12.
Two thermodynamic equilibrium models were applied to estimate changes in mean airborne fine particle (PM2.5) mass concentrations that could result from changes in ambient concentrations of sulfate, nitric acid, or ammonia in the southeastern United States, the midwestern United States, and central California. Pronounced regional differences were found. Southeastern sites exhibited the lowest current mean concentrations of nitrate, and the smallest predicted responses of PM2.5 nitrate and mass concentrations to reductions of nitric acid, which is the principal reaction product of the oxidation of nitrogen dioxide (NO2) and the primary gas-phase precursor of fine particulate nitrate. Weak responses of PM2.5 nitrate and mass concentrations to changes in nitric acid levels occurred even if sulfate concentrations were half of current levels. The midwestern sites showed higher levels of fine particulate nitrate, characterized by cold-season maxima, and were projected to show decreases in overall PM levels following decreases of either sulfate or nitric acid. For some midwestern sites, predicted PM2.5 nitrate concentrations increased as modeled sulfate levels declined, but sulfate reductions always reduced the predicted fine PM mass concentrations; PM2.5 nitrate concentrations became more sensitive to reductions of nitric acid as modeled sulfate concentrations were decreased. The California sites currently have the highest mean concentrations of fine PM nitrate and the lowest mean concentrations of fine PM sulfate. Both the estimated PM2.5 nitrate and fine mass concentrations decreased in response to modeled reductions of nitric acid at all California sites. The results indicate important regional differences in expected PM2.5 mass concentration responses to changes in sulfate and nitrate precursors. Analyses of ambient data, such as described here, can be a key part of weight of evidence (WOE) demonstrations for PM2.5 attainment plans. Acquisition of the data may require special sampling efforts, especially for PM2.5 precursor concentration data.  相似文献   

13.
Abstract

This paper describes a statistic to quantify spatial representativeness for the air measurements of an urban fixed-site ambient air monitoring station. The application of such a statistic of representativeness has also been successfully demonstrated by two data sets collected at the Gu-Ting monitoring station in Taipei. By measuring NO2 at 22 sites simultaneously around the Gu-Ting station, the statistic has characterized different degrees of spatial representativeness for nitrogen dioxide (NO2) at various areas and microenvironments surrounding this fixed-site monitoring station. By measuring ambient air concentrations at six sites sequentially around the Gu-Ting station, the statistic has also characterized different degrees of representativeness for particulates less than 10 urn in size—(PM10), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), NO2, nitrogen oxides (NOX), nitrogen monoxide (NO), total hydrocarbons (THC), and nonmethane hydrocarbons (NMHQ—at an open area surrounding this fixed-site monitoring station. This statistical method identifies the Gu-Ting station is well representative of outdoor concentrations of all nine air pollutants for a period of three weeks at the areas within a 700 m radius around this station. The indoor NO2 concentrations, however, are not represented by the measurements at the fixed-site monitoring station.  相似文献   

14.
The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998-2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

15.
Indoor and outdoor air quality investigation at schools in Hong Kong   总被引:7,自引:0,他引:7  
Lee SC  Chang M 《Chemosphere》2000,41(1-2):109-113
Five classrooms in Hong Kong (HK), air-conditioned or ceiling fans ventilated, were chosen for investigation of indoor and outdoor air quality. Parameters such as temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), respirable particulate matter (PM10), formaldehyde (HCHO), and total bacteria counts were monitored indoors and outdoors simultaneously. The average respirable particulate matter concentrations were higher than the HK Objective, and the maximum indoor PM10 level exceeded 1000 microg/m3. Indoor CO2 concentrations often exceeded 1000 microl/l in air-conditioning and ceiling fan classrooms, indicating inadequate ventilation. Maximum indoor CO2 level reached 5900 microl/l during class at the classroom with cooling tower ventilation. Increasing the rate of ventilation or implementation of breaks between classes is recommended to alleviate the high CO2 level. Other pollution parameters measured in this study complied with the standards. The two most important classroom air quality problems in Hong Kong were PM10 and CO2 levels.  相似文献   

16.
Sulphur dioxide has been monitored for many years at several rural sites in east-central England, and its temporal and spatial distribution and sources are reasonably well established. The air quality limit values of the Council of the European Communities are not exceeded. NO, NO2 and O3 have also been measured continuously for over 5 years at one rural site and for 2 years at another three sites in this region, and preliminary distribution patterns of these gases are available. The oxides of nitrogen, like SO2, are greatest on average in winter months, but O3 is greatest on average in May, although peak hourly events exceeding the World Health Organisation Environmental Health Criteria (WHOEHC) are common during other summer months. The oxides of nitrogen have exceeded the WHOEHC on occasion, and these are thought to have derived mostly from motor vehicles in distant towns, the gases then travelling in shallow inversion layers.Rainwater acidities and other constituents have been measured for over 7 years at several sites in the region, initially on a weekly basis, but in recent years on a daily and then an hourly basis at a few sites, and preliminary distribution patterns are available. Rainwater acidity is greatest on average in Spring, following the O3 pattern more closely than those of the other gases. Daily deposited acidity is episodal. Hourly concentrations of acidity in rainwater during rain events show more than one type of pattern.  相似文献   

17.
In order to screen for the best species for mitigating nitrogen dioxide (NO2) by plants at urban levels, we investigated assimilation of nitrogen dioxide by 70 taxa of woody plants that are mostly utilized as roadside trees. They were fumigated with 15N-labeled NO2 at 0.1 microl l(-1) for 8h, and the amount of reduced nitrogen derived from NO2 (in mg Ng(-1) dry weight) in the leaves (designated NO2 assimilation capability hereafter) were determined. Data were analyzed in the comparison with the previously reported ones obtained at 4 microl l(-1) NO2. Among the 70 taxa, the value of NO2 assimilation capability differed by a factor of 122 between the highest (Prunus yedoensis; 0.061) and the lowest (Cryptomeria japonica; 0.0005). Based on the analysis of NO2 assimilation capability values at 0.1 and 4 micro l(-1) NO2, the 70 taxa of woody plants appeared to be classified into four types; those of high NO2 assimilation and high NO2 resistance, those of high NO2 assimilation but low NO2 resistance, those of low NO2 assimilation and low NO2 resistance, and those of low NO2 assimilation but high NO2 resistance. The first, second, third and fourth types include 13, 11, 35 and 11 taxa, respectively. The broad-leaf deciduous trees may have advantages of high biomass and fast growth as compared with woody plants of other habits. Thus, four broad-leaf deciduous species, Robinia pseudo-acacia, Sophora japonica, Populus nigra and Prunus lannesiana, were concluded here to be the best phytoremediators for the urban air.  相似文献   

18.
Emission reductions were mandated in the Clean Air Act Amendments of 1990 with the expectation that they would result in major reductions in the concentrations of atmospherically transported pollutants. This paper investigates the form and magnitude of trends from 1989 to 1995 in atmospheric concentrations of sulfur dioxide, sulfate, and nitrogen at 34 rural sites in the eastern US. Across all sites, there is strong evidence of statistically significant declining trends in sulfur dioxide (median change of -35%) and sulfate concentrations (median change of -26%). In general, trends in nitrogen concentrations were not as pronounced (median change of -8%) as trends in the sulfur compounds. A regional estimate of trend for a cluster of sites in the Ohio River valley showed close correspondence between declining sulfur dioxide concentrations (-35%) and changes in sulfur dioxide emissions (-32%) in this region.  相似文献   

19.
Sources and concentrations of indoor nitrogen dioxide in Barcelona, Spain   总被引:1,自引:0,他引:1  
Sources and concentrations of indoor nitrogen dioxide (NO2) were examined in Barcelona, Spain, during 1996-1999. A total of 340 dwellings of infants participating in a hospital-based cohort study were selected from different areas of the city. Passive filter badges were used for indoor NO2 measurement over 7-30 days. Dwelling inhabitants completed a questionnaire on housing characteristics and smoking habits. Data on outdoor NO2 concentrations were available for the entire period of the study in the areas of the city where indoor concentrations were determined. Bivariate analysis was performed to investigate relationships between indoor NO2 concentrations on one hand and outdoor NO2 concentrations, housing, and occupant characteristics on the other. Stepwise multiple linear regression was performed with variables that were found to have a significant bivariate relationship. Indoor NO2 mean values ranged between 23.57 ppb in 1996 and 27.02 ppb in 1999, with the highest yearly value of 27.82 ppb in 1997. In the same time period, mean outdoor NO2 concentration ranged between 25.26 and 25.78 ppb with a peak of 30.5 ppb in 1998. Multiple regression analysis showed that principal sources of indoor NO2 concentrations were the use of a gas cooker, the absence of an extractor fan when cooking, and cigarette smoking. The absence of central heating was also associated with higher NO2 concentrations. Finally, each ppb increase in outdoor NO2 was associated with a 1% increase in indoor concentrations.  相似文献   

20.
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号