首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
测定了27种取代苯类化合物在松花江江水中的生物降解性,采用量子化学MOPAC6.0-AM1法计算了化合物的分子量(MW),生成热(Hf),分子总表面积(TSA)及高占有轨道能(EHOMO),结合辛配醇/水分配系数lgP及酸解离常数pKa对其中22种化合物BOD值进行了多元线性回归分析,得到如下模型:BOD=105.73-0.439MW-0.076Hf-6.660lgP n=22,R^2=0.821,SE=8.250,F=27.56,P=0.000应用所得模型对其余5个化合物的生物降解性进行了预测,只有一个化合物相的相对预测误差大于20%,为20.8%,平均预测误差为12.4%。  相似文献   

2.
松花江水中酚类化合物生物降解性的测定及QSBR研究   总被引:4,自引:0,他引:4  
以松花江水中细菌为接种源,用碘量法分别测定了18种酚类化合物的BOD5值采用QSAR程序软件计算得分子量MW、分子体积MV、疏水性参数lgP及电离常数pKa.用MMP软件计算了四种分子连接性指数(2x,4X,2xV及4xV).对18种及训练组中的14种酚类化合物BODT值分别与其结构参数进行了回归分析,得到如下最佳回归方程:应用所得QSBR模型,拟合了18种化合物的BOD5值,计算了残差,预测了实验组中4个化合物的BODT值,并初步探讨了生物降解机理.  相似文献   

3.
酚类化合物(BP)是重要的工业原料或中间体,但工业废水含有的酚类化合物会对环境造成污染。为建立酚类化合物臭氧氧化速率的QSPR(quantitative structure-property relationship)预测模型,分析了23种酚的分子结构与臭氧氧化速率之间的相关关系,计算了这些酚的分子连接性指数和分子形状指数,优化筛选了连接性指数的1χ和2χ、分子形状指数的K1和K2共4种参数,将其作为BP神经网络的输入层变量,臭氧氧化速率作为输出层变量,采用4:2:1的网络结构,获得了令人满意的QSPR神经网络预测模型,模型总相关系数r为0.976,计算得到的臭氧氧化速率的预测值与实验值较为吻合,平均残差仅为0.05;为检验结构参数建立模型的普适性,同样方法建立对酚类化合物的辛醇-水分配系数的预测模型,模型总相关系数r达到0.993,辛醇-水分配系数的预测值与实验值吻合度较为理想,结果表明,本法建构的神经网络模型具有良好的稳健性和预测能力。  相似文献   

4.
青海弧菌对有毒酚类化合物具有强烈的敏感性,为建立酚类衍生物对青海弧菌毒性的定量结构-活性相关性(QSAR)模型,分析了16种酚类衍生物的分子结构与对青海弧菌毒性之间的相关关系,计算了酚类衍生物的分子连接性指数和分子形状指数,并优化筛选了分子连接性指数的1阶路径指数(~1χ)和分子形状指数的2阶特征指数(K_2)及1阶和2阶指数乘积值(K_4),用这3种指数与对青海弧菌的毒性进行多元回归分析,多元回归方程的决定系数R~2=0.971。为进一步提高预测精度,将这3种分子结构参数作为神经网络的输入变量,毒性值作为输出变量,采用3:2:1的网络结构,通过反向传播(BP)神经网络法获得满意的QSAR预测模型,总的相关系数r为0.996,计算得到的毒性预测值与实验值较为吻合,平均相对误差仅为1.98%,结果表明该模型具有良好的预测酚类衍生物毒性的能力,可以看出神经网络方法对酚类化合物发光菌毒性预测比多元线性回归方法的统计学意义更加明显。  相似文献   

5.
腈醛混合化合物对发光菌联合毒性的QSAR研究   总被引:5,自引:1,他引:5  
测定了羟基乙腈与系列醛类化合物和对苯二甲醛与系列腈类化合物对发光菌(Photobacterium phosphoreum)的联合毒性,探讨了腈醛混合化合物对发光菌的联合毒性机制,并尝试提出了腈醛混合化合物对发光菌联合毒性的QSAR模型.结果表明,不同的腈醛混合化合物对发光菌的联合毒性不同,联合毒性的大小与腈类化合物和醛类化合物之间化学相互作用的程度紧密相关,采用QSAR模型TU=0.842—0.831σ。(n=8,r^2=0.803,SE=0.222,F=24.415,P=0.003)和TU=-0.348—8.450C^*(n=8,r^2=0.874,SE=0.219,F=41.730,P=0.001)分别定量描述羟基乙腈与系列醛类化合物和对苯二甲醛与系列腈类化合物对发光菌的联合毒性.模型具有较高的稳定性和预测能力.  相似文献   

6.
酚类化合物的三维-定量结构与生物降解性关系(3D-QSBR)   总被引:2,自引:0,他引:2  
利用比较分子场分析法(CoMFA)研究了32种酚类化合物的生物降解性与其结构间的三维定量关系,并利用分子场聚焦(Region Focus)和调整网格大小对模型进行改善,得到具有较强预测能力的3D-QSBR 模型.结果表明:进行分子场聚焦和减小网格步长(Grid Spacing)均可改善模型质量,得到的最佳模型主成分数为4,交叉验证相关系数Q2为0.587,复相关系数R2为0.917,F值为57.654.  相似文献   

7.
取代芳烃的生物降解性与结构相关性研究   总被引:4,自引:0,他引:4  
采用量子化学MOPAC-AM1法计算了42种取代芳烃的生成热Hf、分子最高占有轨道能EHOMO、分子量MW、分子总表面积TSA及偶极矩μ。分别采用线性回归分析法和人工神经网络法对所研究化合物的生物降解性参数BOD进行QSBR研究。对训练组而言,线性方法和神经网络法的平均预测误差分别为15.9%和11.4%;而测试组化合物的平均百分误差分别为14.5%和13.0%。无论对于测试组还是训练组,神经网络法的预测都更精确。  相似文献   

8.
为了解施用生物炭对杨树人工林土壤CO_2、CH_4、N_2O3种温室气体排放的长期影响及其主要调控机理,以东台国有林场杨树人工林为对象,设置低生物炭添加量(D,40 t·hm~(-2))、中生物炭添加量(Z,80 t·hm~(-2))、高生物炭添加量(G,120 t·hm~(-2))及对照(CK,0 t·hm~(-2))4种不同处理,采用静态箱-气相色谱法对CO_2、CH_4、N_2O3种温室气体的排放速率进行了多次测定,同时测定分析了土壤含水率、土壤酶活性等土壤理化及生化指标,为阐明生物炭对杨树人工林生态系统的长期影响提供理论依据。结果表明:(1)对照样地土壤CO_2排放速率变化范围为123.428-412.066mg·m-2·h-1,中、高生物炭添加处理显著促进了土壤CO_2的排放(P=0.001、0.000),分别导致CO_2年平均排放速率增加了21%和20%;(2)对照样地土壤CH4排放速率变化范围为0.578-1.405 mg·m-2·h-1,中、高生物炭添加处理显著抑制了土壤CH_4的排放(P=0.000、0.000),分别导致CH4年平均排放速率降低了21%和33%;(3)对照样地土壤N2O排放速率变化范围为0.124-0.297mg·m-2·h-1,中、高生物炭添加处理显著抑制了土壤N2O的排放(P=0.003、0.000),分别导致N_2O年平均排放速率降低14%和37%;(4)土壤CO_2排放主要与土壤微生物量C(MBC)、水溶性有机碳(DOC)、全氮(TN)、蔗糖酶活性(IA)呈显著正相关关系(P=0.000、0.000、0.013、0.000),与土壤微生物量N(MBN)、土壤微生物量P(MBP)呈显著负相关关系(P=0.000、0.000);(5)土壤CH4排放和N2O排放主要与MBN、MBP、土壤含水率(SMC)、蛋白酶活性(PA)、脲酶活性(UA)、IA呈显著正相关关系(PCH4=0.011、0.009、0.005、0.000、0.000、0.007;PN2O=0.021、0.024、0.002、0.000、0.001、0.019),与MBC、DOC、TN呈显著负相关关系(PCH4=0.000、0.003、0.002;PN2O=0.001、0.012、0.001)。综上,添加生物炭导致了土壤N、P养分有效性增加和蛋白酶、脲酶等相关酶活性降低,可能是本区域生物炭调控杨树人工林土壤3种温室气体排放的主要机制。  相似文献   

9.
醇和酚类等有机化合物作为重要的工业原料,广泛应用于医药卫生、有机合成、食品工业等领域,但生产中排放于环境的这些物质,会对生物造成一定的毒性作用。为建立包含醇和酚类有机污染物对欧洲林蛙蝌蚪及梨形四膜虫毒性的定量结构-活性相关性模型,计算了227种有机污染物的分子连接性指数和分子形状指数,优化筛选了分子连接性指数的0X、1X、2X、4X和5Xc、分子形状指数的K1和K2共7种参数,将这7种结构参数作为神经网络输入层变量,110种有机污染物对欧洲林蛙蝌蚪的毒性值作为输出层变量,采用7:8:1的网络结构方式,构建了令人满意的对欧洲林蛙蝌蚪毒性的神经网络预测模型,方程总相关系数r为0.988,毒性预测值与实验值之间的平均误差为0.14。为检验指数的普适性,同样用这7个结构参数与117种醇和酚类化合物对梨形四膜虫的毒性进行分析,所得神经网络模型的总相关系数达到0.997,对梨形四膜虫毒性的预测值与实验值之间的平均误差仅为0.065,结果表明,所建模型具有良好的预测有机污染物对林蛙蝌蚪及梨形四膜虫急性毒性的能力。  相似文献   

10.
多环芳烃的分子表面积与双区理论   总被引:3,自引:0,他引:3  
本文提出了一种利用基团贡献法原理计算分子表面积(TSA)的新方法,应用该方法计算了多环芳烃(PAHs)的TSA,并以双区理论为基础,研究PAHs的分子表面积与致癌活性的关系,将TSA参数引入双区理论方程,通过本文提出的理论方程对PAHs的致癌活性进行了计算,所得结果与实验值吻合得很好,对双区理论进行了分子表面积的补充。  相似文献   

11.
卤代肉桂酸因具有肉桂酸一样的抑菌、抗氧化和抗微生物活性作用,故被广泛应用于医药、化妆品和农药等生产行业.为了研究卤代肉桂酸对羊角月牙藻急性毒性与其分子结构之间的定量构效关系,基于分子拓扑理论,计算了14个卤代肉桂酸分子的4类分子结构参数,筛选了电性拓扑状态指数(E13)和电性距离矢量(M15)作为理论结构描述符,将其与卤代肉桂酸对羊角月牙藻急性毒性进行回归分析,并将这2种参数作为神经网络法的输入层参数,采用2-2-1的神经网络结构,构建了相关性良好的预测毒性的神经网络模型,模型的总相关系数(R总)为0.951,预测的毒性值与其相应文献实验值的相对平均误差为4.49%,吻合度较好,利用模型预测了另外12种卤代肉桂酸对羊角月牙藻急性毒性.结果表明,卤代肉桂酸对羊角月牙藻急性毒性与2种分子结构参数具有良好的非线性关系.  相似文献   

12.
氟化酚对梨形四膜虫毒性的定量构效关系解析   总被引:1,自引:0,他引:1  
应用Chem3D Ultra 7.0软件中的MOPAC半经验方法PM3,计算了16种氟化酚的19个量子化学和理化参数.采用PLS-VIP方法,筛选出影响氟化酚毒性的7个主要参数,即最低空轨道能量(ELUMO)、最高轨道能量与最低空轨道能量之差(△E)、分子总能量(ET)、最正H原子电荷(QH+)、羟基基团中氧原子的最负电荷(QO-)、connolly分子可及表面积(CAA)和connolly溶剂排斥体积(CSV),并据此建立模型对水生梨形四膜虫的急性毒性作定量构效关系研究.结果表明,氟化酚对梨形四膜虫的毒性作用表现为反应性毒性,ELUMO,QH+,ET对氟化酚的毒性作用有重要贡献,氟化酚对四膜虫急性毒性的大小与ELUMO、△E和ET呈负相关,而与QH+、QO-、CAA、CSV呈正相关,所得最优模型具有良好的预测效果(R2=0.961,F=344.8,P=2.92×10-11)和较高的稳定性(Q2cum=0.909).  相似文献   

13.
西藏高原青稞三种植被指数对红外增温的初始响应   总被引:3,自引:0,他引:3  
气候变暖影响着农作物生长及其植被指数。为了探讨西藏高原青稞(Hordeum vulgare Linn.var.nudum Hook.f.)归一化植被指数(normalized difference vegetation index,NDVI)、归一化绿波段差值植被指数(normalized green difference vegetation index,GNDVI)和土壤调节植被指数(soil adjusted vegetation index,SAVI)对气候变暖的初始响应,2014年5月在西藏达孜县布设了一个红外增温实验(3个水平,即对照,1 000和2 000 W红外增温)。通过对2014年6─9月利用农业多光谱相机获取的3种植被指数和利用HOBO微气候观测系统获取的两个深度(5和20 cm)的土壤温湿度的统计分析,探讨了西藏高原青稞植被指数对红外增温的响应及其与土壤温湿度的相互关系。结果表明,1 000和2 000 W的增温使5 cm的土壤温度(t5)分别升高了约1.62和1.77℃,使20 cm的土壤温度(t20)分别升高了约1.16和1.43℃;相反使5 cm的土壤湿度(SM5)分别下降了约1.8%和14.1%,使20 cm的土壤湿度(SM20)分别下降了21.6%和14.7%。1 000 W的增温使NDVI、GNDVI和SAVI分别增加了约2.4%、4.3%和0.5%;2 000 W的增温则使NDVI、GNDVI和SAVI分别增加了约5.5%、5.3%和4.8%,尽管增加幅度并不显著。单因子回归分析表明,t5与NDVI(r2=0.110,P=0.026)和GNDVI(r2=0.254,P=0.000 4)为负相关,而与SAVI无关(r2=0.069,P=0.082);t20与GNDVI为负相关(r2=0.218,P=0.001),而与NDVI(r2=0.040,P=0.190)和SAVI(r2=0.014,P=0.443)无关;SM5与NDVI(r2=0.277,P=0.000 2)、GNDVI(r2=0.394,P=0.000 0)和SAVI(r2=0.208,P=0.002)为正相关。SM20与GNDVI为正相关(r2=0.193,P=0.003),而与NDVI(r2=0.059,P=0.107)和SAVI(r2=0.037,P=0.209)无关。多重回归分析表明,SM5主导着NDVI、GNDVI和SAVI的变异。偏相关分析表明,NDVI、GNDVI和SAVI与SM5的相关系数分别为0.442(P=0.003)、0.412(P=0.007)和0.404(P=0.008);与SM20的相关系数分别为-0.042(P=0.792)、0.051(P=0.749)和-0.033(P=0.837);与t5的相关系数分别为-0.154(P=0.332)、-0.019(P=0.907)和-0.170(P=0.282);与t20的相关系数分别为0.228(P=0.147)、-0.041(P=0.795)和0.268(P=0.086)。因此,红外增温引起的干旱抑制了青稞的生长,进而影响了植被指数,即植被指数的不显著变化可能与红外增温引起的土壤干旱有关。  相似文献   

14.
15种取代酚对淡水发光菌Q67的毒性及定量构效分析   总被引:1,自引:0,他引:1  
为了更加准确和便捷地预测各种取代酚类化合物的急性毒性,以淡水发光菌Q67(Vibrio qinghaiensis sp.-Q67)为受试生物,测定了15种典型取代酚的急性毒性;采用logD(正辛醇/水分配系数),LUMO(分子最低空轨道能)和MW(分子量)等取代酚的7种主要结构参数,利用偏最小二乘回归法建立了定量结构-活性相关(quantitative structure-activity relationships,QSAR)模型。结果表明,15种取代酚的EC_(50)在5.76×10~(-6)~1.27×10~(-3)mol·L~(-1)之间,且有很好的剂量-效应关系;QSAR模型的主成分分析显示,-logEC_(50)与logD、LUMO和MW值正相关,且logD对模型的贡献最大,即越容易与Q67菌结合的酚类化合物对其的急性毒性越大;建立的QSAR模型具有较好的预测能力(Q~2_(EXT)=0.91,RMSE=0.49)和较高的稳定性(Q~2_(CUM)=0.58),能够用于预测其他酚类化合物对Q67菌的急性毒性。  相似文献   

15.
藏北高寒草甸是全球高寒草地的重要组成部分,是对气候变化最敏感的植被类型之一。关于高寒草地植被指数与环境温湿度因子的关系还存在着诸多不确定性,这限制了准确预测高寒草地植被生长对将来气候变化的响应。定量化高寒草地植被指数与气候因子的关系利于预测将来气候变化对高寒草地植被生长的影响。该研究基于相关分析和多重逐步回归分析探讨了藏北高原不同海拔高度(4300、4500和4700 m)的高寒草甸2011─2014年每年6─9月的归一化植被指数(normalized difference vegetation index,NDVI)、增强型植被指数(Enhanced Vegetation Index,EVI)与土壤温度、土壤湿度、空气温度、相对湿度、饱和水汽压差的相互关系。相关分析表明,3种海拔的NDVI(4 300 m:r=0.79,P=0.000;4 500 m:r=0.80,P=0.000;4 700 m:r=0.52,P=0.005)和EVI(4 300 m:r=0.61,P=0.001;4 500 m:r=0.66,P=0.000;4 700 m:r=0.53,P=0.004)都随着土壤湿度的增加显著增加;3种海拔的NDVI(4 300 m:r=-0.68,P=0.000;4 500 m:r=-0.56,P=0.002;4 700 m:r=-0.40,P=0.037)和EVI(4 300 m:r=-0.56,P=0.002;4 500 m:r=-0.49,P=0.008;4 700 m:r=-0.46,P=0.014)都随着饱和水汽压差的增加显著降低;植被指数与环境温湿度因子的相关系数随着海拔的变化而变化;NDVI和EVI与环境温湿度因子的相关系数存在差异。多重逐步回归分析表明,土壤湿度一个因子解释了3种海拔的归一化植被指数、海拔4 300和4 500 m的增强型植被指数的变异,而海拔4 700 m的土壤湿度和土壤温度共同了解释了增强型植被指数的变异,其中土壤湿度的贡献较大。因此,在藏北高寒草甸,植被指数对气候变化的敏感性可能随着海拔的变化而变化,NDVI和EVI对气候变化的敏感性可能不同,土壤湿度主导着NDVI和EVI的季节变化。  相似文献   

16.
以科尔沁沙地4种不同退化程度沙地群落为研究对象,采用野外植物样方调查与室内土壤理化分析相结合的方法,系统分析了固定沙地(潜在沙漠化阶段)、半固定沙地(轻度沙漠化阶段)、半流动沙地(中度沙漠化阶段)和流动沙地(严重沙漠化阶段)4个群落的植被、土壤特征的变化以及土壤与植被之间的相互关系,为退化沙质草地群落地恢复与重建提供科学依据。结果表明,(1)草地沙漠化过程中,群落物种组成发生显著变化,物种数不断减少,从20下降到11。不同群落盖度(F=42.569,n=120,P0.001)、密度(F=38.817,n=120,P0.001)和地上生物量(F=29.017,n=120,P0.001)均存在显著差异,且下降趋势明显,下降幅度分别为82%、78%和85%。(2)草地沙漠化过程中,草本植物占据绝对优势,但其比例明显下降,多年生草本植物和灌木的物种数总体呈下降趋势。藜科植物具有广适性,数量相对稳定,重要值呈现上升趋势;禾本科和豆科植物种类和重要值都呈大幅下降趋势。菊科植物相对较少,从半固定沙地到流动沙地,差巴嘎蒿(Artemisia halodendron)在群落中占有重要地位。(3)草地沙漠化过程中,Shannon-Wiener指数、Simpson指数、均匀度指数和Margalef指数均呈下降态势。(4)草地沙漠化过程中,土壤机械组成从固定沙地到流动沙地,粗砂含量增加,细砂粒、黏粉粒含量呈下降态势,土壤水分也不断减少。土壤养分全磷、全氮、速效磷、速效氮和有机质的含量随着沙漠化程度的加剧,表现出不同程度的降低,且差异显著(P0.05)。(5)草地沙漠化过程中,土壤与植被间呈现出显著的相关性(P0.05),说明土壤与植被紧密联系在一起,沙漠化过程实质就是土壤与植被协同退化的结果。  相似文献   

17.
为了探究不同盐碱程度土壤甲烷氧化菌比活性与甲烷吸收速率的关系,通过室内CH4培养实验,采用实时荧光定量PCR技术,研究3种不同盐碱程度土壤,即:轻度盐化土壤(SA)、强度盐化土壤(SB)、盐土(SC)CH4吸收速率和甲烷氧化菌比活性。以含有甲烷氧化菌功能基因pmo A片段的重组质粒为标准品,测得标准曲线的相关系数r2为0.9977,扩增效率为86%,溶解曲线峰值均一。结果表明:轻度盐化土壤(SA)、强度盐化土壤(SB)、盐土(SC)CH4吸收速率分别为28.4、20.6、17.7 ng·kg-1·h-1,表现为轻度盐化土壤(SA)强度盐化土壤(SB)盐土(SC)。土壤CH4吸收速率与土壤甲烷氧化菌比活性显著正相关,Person相关系数r=0.788(P=0.012,n=9)。由Monte Carlo法检验后表明:p H、土壤浸提液电导率EC与土壤甲烷氧化菌比活性显著负相关,相关系数分别为-0.943(P=0.000 1,n=9)和-0.895(P=0.001,n=9),而容重ρb、总磷TP、总氮TN、有机碳OC与土壤甲烷氧化菌比活性无显著相关性(P0.05)。较高p H和EC的盐碱土壤,土壤甲烷氧化菌比活性低,CH4吸收速率低。  相似文献   

18.
稠环芳烃在Pluronic嵌段共聚物胶束水溶液中的增溶   总被引:6,自引:0,他引:6  
三种Pluronic嵌段共聚物(F108,P94和L64)胶束水溶液对萘、蒽、芘的增溶研究表明,它们在胶束和水相间的分配系数Kv值大小的顺序为:P94>F108>L64,这是由于具有较长PPO嵌段的Pluronic共聚物分子形成了较大内核的胶束,这种胶束有利于稠环芳烃的增溶。当指定Pluronic胶束体系时,Kv值随着稠环芳烃分子憎水性的增强(即分子苯环数目增加)而增大。这些规律同样反映在吸附等温线中。  相似文献   

19.
为了探讨不同方法改性后的海泡石对铅污染土壤的修复效果,以天然海泡石(Sep)为研究材料,对其进行巯基乙酸改性(Q-Sep)、热改性(R-Sep)、热处理+FeSO_4改性(F-Sep),观察改性海泡石表面微观形态与结构,并分别添加1%、3%、6%、9%、15%天然海泡石和改性海泡石进行土培试验,采用二乙三胺五乙酸(DTPA)浸提法以及BCR连续提取法对土壤有效态铅和铅形态进行分析,探究不同添加量海泡石对铅污染土壤的钝化效果,为改性海泡石应用于土壤钝化修复提供理论依据。结果表明:经FeSO4、巯基乙酸和热处理改性后的海泡石比表面积比天然海泡石显著增大,其中F-Sep的比表面积最大。F-Sep和R-Sep的孔容也与Sep有显著差异。当Q-Sep、R-Sep和F-Sep的添加量≥3%时,土壤pH值与对照组相比有显著提高,添加量≥6%时,土壤CEC较对照组有显著提高。添加4种海泡石的土壤与对照组相比酸提取态铅含量有显著减少,添加F-Sep、Q-Sep和R-Sep的土壤酸提取态铅减少率分别为19.95%-57.74%、44.31%-71.51%和32.93%-64.56%,土壤酸提取态铅含量、可还原态铅含量与残渣态铅含量呈极显著负相关(r=-0.937,P=0.000和r=-0.618,P=0.001),表明酸提取态铅和可还原态铅主要是向残渣态转化。添加海泡石显著降低了土壤有效态铅含量,土壤有效态铅含量与土壤pH值、土壤CEC呈显著负相关关系(r=-0.887,P=0.000和r=-0.596,P=0.002),与酸提取态铅和可还原态铅呈显著正相关关系(r=0.949,P=0.000和r=0.506,P=0.008)。添加15%Q-Sep材料后的土壤有效态铅含量降幅最大,达到39.68%。3种改性海泡石材料对土壤中铅的钝化效果均优于天然海泡石,其中Q-Sep对土壤铅的钝化效果最佳。  相似文献   

20.
实验增温对西藏高原玉米田土壤呼吸的影响   总被引:1,自引:0,他引:1  
青藏高原农业区正经历着明显的气候变暖,但气候变暖如何影响高寒农业生态系统碳循环目前仍不明确。土壤呼吸是第二大陆地生态系统碳通量,高寒农业生态系统土壤呼吸对气候变暖的响应的不确定性限制了气候变化背景下人类对青藏高原高寒生态系统碳循环的预测能力。2015年4月在西藏玉米田采用开顶式生长箱进行模拟增温试验,旨在探究气候变暖对土壤呼吸及其温度敏感性的影响。在2015年玉米生长季节的5—8月份,利用Li8100土壤通量观测系统测定了6次土壤呼吸日变化(8:00—20:00),并利用HOBO微气候观测系统观测了5 cm深处的土壤温度和土壤湿度。结果表明,实验增温显著提高了5 cm深处的土壤温度(t=11.93,P=0.000),增幅为3.22℃,同时显著降低了5 cm深处的土壤含水量,降幅为0.04m~3·m~(-3)(t=4.87,P=0.008)。对照和模拟增温处理的土壤呼吸速率分别为6.79μmol·m~(-2)·s~(-1)和7.34μmol·m~(-2)·s~(-1),两者间无显著差异(F=1.65,P=0.235)。尽管如此,土壤呼吸仍存在着显著的日变化(F=137.66,P=0.000)和季节变异(F=54.48,P=0.000)。对照和模拟增温处理的土壤呼吸温度敏感性分别为1.70和1.77,两者间也无显著差异(t=2.69,P=0.100)。土壤温度解释了36%的对照处理的土壤呼吸变异,而土壤温度和土壤湿度共同解释了62%的土壤呼吸变异。因此,3.22℃的土壤增温没有显著改变土壤呼吸及其温度敏感性,这与3.22℃的土壤增温引起了土壤湿度的降低有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号