首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 76 毫秒
1.
地下水污染已成为我国严峻的环境问题,治理污染地下水工作迫在眉睫。可渗透反应墙(permeable reactive barrier,PRB)技术是污染地下水修复的新兴技术,具有治理效果好、造价低廉、对生态环境影响小等特点,能够有效去除地下水中的有机氯化物、重金属和无机离子等。PRB技术在美国已广泛应用到工程领域并实现商业化,在我国目前处于实验室研究和现场示范应用阶段。综述了PRB技术的原理、结构类型、活性填料、修复机理和工程应用,指出PRB系统长期有效运行存在的技术问题,以及PRB技术的应用前景和重点研究方向,以期为PRB技术在我国的研发和推广应用及地下水污染治理提供参考。  相似文献   

2.
胡莺 《环境》2006,(Z1):29-31
零价铁可渗透反应墙(Fe0-PRB)技术,已被证明是一项修复由卤代烃、卤代芳烃和有机氯农药以及一些有毒金属(如铬、硒、铀、砷和锝等)引起的地下水污染的有效技术.本文总结了国内外利用零价铁PRB修复受污染地下水的研究成果和动态,并结合当前该技术面临的问题分析了研究方向和发展前景.  相似文献   

3.
零价铁修复土壤及地下水的PRB技术   总被引:4,自引:0,他引:4  
零价铁可渗活性栅(Fe0-PRB)技术,被证明是一项修复由卤代烃、卤代芳烃和有机氯农药以及一些有毒金属(如铬、硒、铀、砷和锝等)引起的土壤及地下水污染的有效技术。本文介绍了零价铁还原脱氯的机理以及影响反应速率的因素;进一步讨论了国内外利用零价铁修复受污染土壤及地下水的研究现状和发展趋势。  相似文献   

4.
以铬污染地下水为研究对象,用零价铁作为反应介质设计了可渗透反应墙(PRB),对零价铁处理铬污染地下水的处理效果和长期稳定性进行了研究。对不同粒径的铁粉处理效果进行对比,发现铁粉粒径越小,处理效果越好。用铁粉作为PRB反应介质,对PRB处理铬污染地下水的长期稳定性进行了研究。试验结果表明,采用Fe0-PRB原位技术处理铬污染地下水,铁粉粒径越小处理废水的水质越好,但介质粒径越小,反应器渗透系数越小,处理水量显著减少;且铁粉在处理含铬废水时生成了大量的难溶化合物,容易造成填料堵塞,导致铁粉利用效率不高。因此有必要研制铁粉复合填料,增大填料的渗透性,提高填料处理含铬废水时铁粉的利用效率。  相似文献   

5.
零价铁PRB修复硝酸盐和铬复合污染地下水   总被引:2,自引:4,他引:2       下载免费PDF全文
通过连续流动试验研究了Fe0(零价铁)-PRB(渗透反应格栅)修复受NO3--N、Cr(Ⅵ)以及NO3--N和Cr(Ⅵ)复合污染模拟地下水的反应特性,分析了Fe0对NO3--N和Cr(Ⅵ)的氧化还原产物,并且对NO3--N和Cr(Ⅵ)的相互影响进行了研究. 采用粒径为0.15~0.42 mm的Fe0和粒径为0.15 mm的活性炭作为PRB反应介质,二者的质量比为1∶1. 结果表明,Fe0单独与NO3--N反应情况下,当进水中ρ(NO3--N)为20 mg/L时,去除率达95%,NO2-为还原过渡状态,NH4+是主要产物,出水pH从原水的7.1升至9.0左右,出水中ρ(TFe)<0.60 mg/L. Fe0处理Cr(Ⅵ)情况下,对Cr(Ⅵ)有较高的去除效果,进水中ρ〔Cr(Ⅵ)〕为10 mg/L时,去除率达96%,反应产物Fe3+和Cr(Ⅲ)可以形成沉淀附着在反应介质上,不会迁移到“下游”水体中,出水pH从原水的7.0升至8.0左右,出水中ρ(TFe)<0.30 mg/L. Fe0去除NO3--N和Cr(Ⅵ)复合污染时,共存的NO3--N对Cr(Ⅵ)的去除效果没有影响,Cr(Ⅵ)的存在降低了NO3--N的去除效果.   相似文献   

6.
PRB修复地下水污染的研究综述   总被引:1,自引:0,他引:1  
综述了可渗透反应墙(PRB)的概念、结构、反应机理,按照处理不同的污染物和反应介质对PRB进行分类,并对此应用现状进行了分析,分析当前PRB技术在修复地下水污染中所遇到的问题,展望其未来发展方向.  相似文献   

7.
采用鼠李糖脂对纳米铁进行改性后负载在活性炭上制备出改性纳米铁/炭,将其作为PRB填充材料,并采用有机玻璃柱模拟连续墙式PRB来进行水中硝态氮地去除研究.结果表明:经过改性后的纳米铁能够有效负载在活性炭上,悬浮稳定性得到明显提高;改性纳米铁/炭粒径远大于纳米铁,将其作为填充材料可有效缓解PRB堵塞问题;当纳米铁与活性炭质量比为5:2时,PRB运行效果最佳;pH值越小,污染液硝态氮浓度越低,水流速度越小均有利于硝态氮地去除.  相似文献   

8.
零价铁PRB修复2,4-DNT污染地下水模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了零价铁(Fe0)作为PRB墙体介质材料去除地下水环境中2,4-二硝基甲苯(2,4-DNT)可行性.通过室内试验研究地下水环境中Fe0去除水相2,4-DNT效果以及降解动力学参数,并结合一假设地下水受2,4-DNT污染的场地,采用Visual Modflow模拟Fe0墙体材料PRB(Fe0-PRB)修复地下水中2,4-DNT降解效果并评价其可行性.结果表明:在模拟过程中,PRB能有效控制并减少污染羽面积,降低污染浓度;污染4a后,污染地下水的2,4-DNT总质量约1.46×104kg,可推知PRB修复达标耗用Fe0材料为8.76×104kg;渗透系数增大导致地下水速率增大,2,4-DNT与墙体Fe0材料接触时间不充分,污染物污染下游地下水,同时也加速PRB上游污染羽面积减少.因此,结合数值模拟是有效的评价PRB介质材料修复地下水污染效果及确定PRB参数的重要手段之一.  相似文献   

9.
Cr(Ⅵ)污染地下水修复的PRB填料实验研究   总被引:1,自引:3,他引:1  
Fe0与Cr(Ⅵ)发生表层反应使Fe0-渗透反应墙(PRB)利用率极低且易板结、堵塞.针对Fe0利用率低,易板结、堵塞问题,研究了不同高分子材料包裹铁粉对受污染地下水中Cr(Ⅵ)的去除影响;实验结果表明,海藻酸钠(SA)作为包裹材料效果最好.FEI电镜扫描及EDX能谱分析结果表明,SA跟2价金属阳离子Ca2+交联形成孔隙结构,不仅为零价铁的附着提供了大量的吸附点位,还可使Cr(Ⅵ)进入到内部与铁粉反应.考察了SA包裹零价铸铁粉(SAC)和包裹还原铁粉(SAR)对Cr(Ⅵ)的去除影响;实验结果表明,SAC除铬性能是SAR的2倍.SAC填料工艺参数优化后,符合一级反应动力学;采用SAC填料进行动态实验,反应完全后铬/铁比高达32.25 mg.g-1,且填料仍然保持较高的渗透系数(2.38 cm.s-1);对SAC填料进行成本分析发现,SAC填料具有明显的价格优势,相比零价铸铁粉混砂填料节约成本76.56%.采用SAC填料治理Cr(Ⅵ)污染地下水是可行的.  相似文献   

10.
ZVI-IRZ(零价铁原位反应带)是一种新兴的地下水原位修复技术,具有工程造价低、施工简单、环境扰动小、修复效果好等优势, 而ZVI(零价铁)自身理化性质、场地的水文地球化学特征以及场地的污染状况等是影响修复效果的主要因素. 当前的研究内容主要包括IRZ(原位反应带)中ZVI的反应活性、稳定性、迁移性、生物毒性以及注入方式等方面. 在修复工程中存在的问题主要体现在:①ZVIs(细粒径零价铁)在含水介质中的迁移性较差,并且多采用Fe2+、pH等间接指标考察含水层中ZVIs的分布情况;②ZVIs表面钝化而诱发介质反应活性下降;③ZVIs的潜在生物环境效应尚不明确. 因此,需要加强对ZVIs表面改性手段、作用机制、老化特性、使用寿命、解钝化及钝化抑制技术等方面的理论与应用研究,还应关注ZVIs在环境中的归趋、转化机制和暴露路径,建立生态系统尺度上的评估体系; 同时,在实际应用中,需要在系统评估污染场地水文地质条件的基础上,加强对注入含水层中ZVIs及其反应产物的原位监测技术研发和监测体系完善.   相似文献   

11.
论述了渗透性反应墙(permeable reactive barrier,PRB)技术的原理及其在地下水硝酸盐污染修复中的应用现状。针对PRB技术类型进行了回顾,介绍了PRB技术中常用的还原型、吸附型、沉淀型和降解型4类介质材料以及PRB技术修复地下水硝酸盐污染的效果。着重讨论了降解型PRB技术在修复地下水硝酸盐污染时所添加的有机碳源、微生物种类对修复效果的影响;分析了PRB运行过程中存在的问题及未来可能的发展方向;指出了应用PRB技术修复地下水硝酸盐污染时要注意的问题,如碳源和细菌易导致地下水二次污染,修复过程中介质易堵塞,碳源释放速率不易控制,硝酸盐向PRB底部沉积不易去除。提出在加强PRB反应机理研究的基础上,可通过PRB与植物修复技术结合,解决PRB运行中存在的问题。  相似文献   

12.
超声/Fe0/EDTA体系对印染污泥中多环芳烃的降解   总被引:1,自引:0,他引:1  
Fe~0/EDTA类芬顿体系能产生氧化能力极强的羟基自由基(·OH),已被广泛应用于有机污染物的去除.提高·OH的生成速率和浓度是高效降解有机污染物的关键.因此,本文利用超声/Fe~0/EDTA体系处理印染污泥,探讨了不同反应参数对体系中产生·OH的影响,考察了该体系对印染污泥中多环芳烃(PAHs)的去除效果.结果表明,在pH为3.0,超声功率为540 W,Fe~0投加量为15 g·L~(-1),EDTA浓度为2.0 mmol·L~(-1)的最佳条件下,·OH浓度高达862μmol·L~(-1).印染污泥中的铁絮凝剂可作为超声/Fe~0/EDTA体系中Fe~(2+)和Fe~(3+)的来源,促使该体系循环产生H_2O_2和·OH.超声/Fe~0/EDTA体系产生的·OH能快速有效地降解印染污泥中的PAHs,∑_(16)PAHs的平均去除率达到77%,同时有机质含量下降了10.1%.  相似文献   

13.
地下水污染修复技术:可渗透反应墙   总被引:8,自引:0,他引:8  
可渗透反应墙技术(permeable reactive barrier)是一种将溶解的污染物从污染水体中去除的钝性处理技术,是近年来比较流行的地下水污染原位处理方法,许多欧美国家已开始进入广泛的应用。介绍了该处理方法的基本原理、系统的主要结构类型、反应材料的选取等,并着重介绍了Fe0-PRB技术及其相关的技术。  相似文献   

14.
傍河型水源井氨氮阻断与去除工程设计案例分析   总被引:1,自引:0,他引:1  
针对沈阳市傍河型水源地的氨氮(NH+4-N)污染问题,通过野外研究区的水文地质调查,在查明研究区NH+4-N污染特征的基础上,结合室内批试验、柱实验和数值模拟,筛选出最佳的NH+4-N去除方案,提出了研究区渗透反应格栅(PRB)构建方案,并成功构建了示范工程尺度的PRB,用以去除地下水中的NH+4-N污染.室内批实验和柱实验表明,利用微生物硝化作用结合沸石的吸附作用去除地下水中NH+4-N是可行的.通过对研究区水质数值模拟,发现构建有一定弧度的PRB能最大限度的保护水源井.在PRB的构建过程中,利用高压旋喷技术和旋挖技术解决了大深度(30 m)PRB的构建问题,且PRB建成运行监测表明,示范工程尺度的PRB能有效阻断和去除地下水中NH+4-N.  相似文献   

15.
采用粒径为0.15~0.42 mm的零价铁(Fe0)和粒径为0.15 mm的活性炭(AC)作为PRB反应介质,通过连续流动试验研究Fe0/AC-PRB修复模拟污染地下水时反应介质与六价铬〔Cr(Ⅵ)〕的反应特性,分析了AC对Cr(Ⅵ)的去除作用、Fe0对Cr(Ⅵ)的还原作用及其氧化还原产物、Fe0/AC对Cr(Ⅵ)的协同去除效果,研究了土壤中残留铬的形态。结果表明,在进水pH为6.9~7.1条件下,AC对Cr(Ⅵ)有一定的去除作用,主要通过吸附对Cr(Ⅵ)加以去除。Fe0对Cr(Ⅵ)有较高的去除率,进水Cr(Ⅵ)浓度为10 mg/L时,去除率达96%,氧化还原产物Fe3+和Cr3+与OH-形成沉淀附着在反应介质中,不会迁移到“下游”水体。Fe0/AC电池腐蚀反应可以提高Fe0的还原能力和还原效率,相对于Fe0单独作用时,铬铁比提高了1倍以上,出水pH从原水的7.0上升到8.0左右,铁浓度小于0.20 mg/L。经过去离子水冲洗,容易迁移且易于被生物利用的弱酸可提取态铬解吸到水相中,有机物与硫化物结合态和残渣态是含水层土壤中铬的主要存在形态,从生物可利用角度来说,铬的环境风险大大降低。  相似文献   

16.
Fe2+和Fe3+在4-氯酚光化学反应中性质的相似性   总被引:5,自引:1,他引:5  
研究在光照条件下,20mg/l4-氯酚+1mg/LFe^2+(体系A)和20g/L4-氯酚+1mgFe^3+(体系B)中Fe^2+和Fe^3+的浓度变化,通过离子色谱手段,在体系A中能够同时检测出Fe^2+,在体系B中亦能够同时检测到Fe^2+,故Fe^2+和Fe^2+在4-氯酚光化学反应中的性质,表现出相似性。  相似文献   

17.
采用批处理实验方式,对"Fe0/优势脱氯菌"体系降解2,4,6-TCP过程进行研究,探讨了零价铁与微生物的协同作用及其机制.结果表明,Fe0对微生物具有促进生长和界面富集的作用,"Fe0/优势脱氯菌"体系菌浓度(D600表示)是单独优势脱氯菌体系的约1.7倍,反应96 h铁表面有大量细菌附着生长,其形态呈现短杆状或类球状;Fe0腐蚀产生的OH-对体系酸化起平衡调节作用,在pH值7.0、Fe0浓度5 g.L-1、2,4,6-TCP浓度30 mg.L-1的初始条件下,体系pH值稳定在7.8左右,有利于2,4,6-TCP还原脱氯反应的进行和优势脱氯菌的生长;2,4,6-TCP的主要降解路径为2,4,6-TCP→2,4-DCP→4-CP.  相似文献   

18.
地下水中SO42-和Cl-对Fe0降解TCE的效应研究   总被引:1,自引:0,他引:1  
文章基于渗透反应墙技术,通过实验室柱实验分析不同浓度的SO42-和Cl-单独作用下Fe0降解TCE的效果.结果表明:在相同Fe0条件下,随SO42-浓度增大,出水口TCE去除率提高,且SO42-在TCE降解反应中由抑制作用逐渐转换为促进作用;此外随Cl-浓度增大,出水口TCE去除率呈下降趋势,且Cl-在TCE降解反应中...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号