首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
Animal manures contain large amounts of soluble phosphorus (P), which is prone to runoff losses when manure is surface-applied. Here we report the efficacy of alum and three coal combustion by-products in reducing P solubility when added to dairy, swine, or broiler litter manures in a laboratory incubation study. Compared with unamended controls, alum effectively reduced readily soluble P, determined in water extracts of moist manure samples with 1 h of shaking, for all three manures. The reduction ranged from 80 to 99% at treatment rates of 100 to 250 g alum kg(-1) manure dry matter. The fluidized bed combustion fly ash (FBC) reduced readily soluble P by 50 to 60% at a rate of 400 g kg(-1) for all three manures. Flue gas desulfurization by-product (FGD) reduced readily soluble P by nearly 80% when added to swine manure and broiler litter at 150 and 250 g kg(-1). Another by-product, anthracite refuse fly ash (ANT), was ineffective for all three manures. In all cases, reduction in readily soluble P is primarily associated with inorganic phosphorus (P(i)) with little change in organic phosphorus (P(o)). Sequential extraction results indicate that the by-product treatments shifted manure P from H2O-P into a less vulnerable fraction, NaHCO3 - P, while the alum treatment shifted the P into even more stable forms, mostly NaOH-P. Such shifts in P fractions would have little influence on P availability for crops over the long-term but would retard and reduce potential losses of P following manure applications.  相似文献   

2.
Both enzymatic hydrolysis and solution (31)P nuclear magnetic resonance (NMR) spectroscopy have been used to characterize P compounds in animal manures. In this study, we comparatively investigated P forms in 0.25 M NaOH/0.05 M EDTA extracts of dairy and poultry manures by the two methods. For the dairy manure, enzymatic hydrolysis revealed that the majority of extracted P was inorganic P (56%), with 10% phytate-like P, 9% simple monoester P, 6% polynucleotide-like P, and 18% non-hydrolyzable P. Similar results were obtained by NMR spectroscopy, which showed that inorganic P was the major P fraction (64-73%), followed by 6% phytic acid, 14 to 22% other monoesters, and 7% phosphodiesters. In the poultry manure, enzymatic hydrolysis showed that inorganic P was the largest fraction (71%), followed by 15% phytate-like P and 1% other monoesters, and 3% polynucleotide-like P. NMR spectroscopy revealed that orthophosphate was 51 to 63% of extracted P, phytic acid 24 to 33%, other phosphomonoesters 6 to 12%, and phospholipids and DNA 2% each. Drying process increased orthophosphate (8.4% of total P) in dairy manure, but decreased orthophosphate (13.3% of total P) in poultry manure, suggesting that drying treatment caused the hydrolysis of some organic P to orthophosphate in dairy manure, but less recovery of orthophosphate in poultry manure. Comparison of these data indicates that the distribution patterns of major P forms in animal manure determined by the two methods were similar. Researchers can utilize the method that best fits their specific research goals or use both methods to obtain a full spectrum of manure P characterization.  相似文献   

3.
Long-term application of phosphorus (P) with animal manure in amounts exceeding removal with crops leads to buildup of P in soil and to increasing risk of P loss to surface water and eutrophication. In most manures, the majority of P is held within inorganic forms, but in soil leachates organic P forms often dominate. We investigated the mobility of both inorganic and organic P in profile samples from a noncalcareous sandy soil treated for 11 yr with excessive amounts of pig slurry, poultry manure, or poultry manure mixed with litter. Solution 31P nuclear magnetic resonance spectroscopy was used to characterize NaOH-EDTA-extractable forms of P, corresponding to 64 to 93% of the total P concentration in soil. Orthophosphate and orthophosphate monoesters were the main P forms detected in the NaOH-EDTA extracts. A strong accumulation of orthophosphate monoesters was found in the upper layers of the manure-treated soils. For orthophosphate, however, increased concentrations were found down to the 40- to 50-cm soil layers, indicating a strong downward movement of this P form. This was ascribed to the strong retention of orthophosphate monoesters by the solid phase of the soil, preventing orthophosphate sorption and facilitating downward movement of orthophosphate. Alternatively, mineralization of organic P in the upper layers of the manure-treated soils may have generated orthophosphate, which could have contributed to the downward movement of the latter. Leaching of inorganic P should thus be considered for the assessment and the future management of the long-term risk of P loss from soils receiving large amounts of manure.  相似文献   

4.
In areas under intensive livestock farming and with high application rates of animal manure, inorganic and organic phosphorus (P) may be leached from soils. Since the contribution of these P compounds to P leaching may differ, it is important to determine the speciation of P in these soils. We determined the effect of various fertilization regimes on the P speciation in NaOH-Na2EDTA (ethylenediaminetetraacetic acid) and water extracts of acidic sandy soil samples from the top 5 cm of grassland with wet chemical analysis and 31P nuclear magnetic resonance (NMR) spectroscopy. These soils had been treated for a period of 11 years with no fertilizer (control), N (no P application), N-P-K, or different animal manures. Inorganic P was highly elevated in the NaOH-Na2EDTA extracts of the soils amended with N-P-K or animal manures, while organic P increased only in the soil treated with pig slurry. Water-extractable P showed a similar trend. As indicated by 31P NMR, orthophosphate monoesters were the main organic P compounds in all soils. Our results suggest that long-term applications of large amounts of P fertilizer and animal manures caused an accumulation of inorganic P, resulting in an increase of the potential risk related to mobilization of inorganic P in the top 5 cm of these soils.  相似文献   

5.
Manure water-extractable phosphorus (WEP) data are used in indices and models to assess P transport in runoff. Methods to measure WEP vary widely, often without understanding the effect on how much P is extracted. We conducted water extractions on five dairy, swine, and poultry manures to assess single and sequential extractions, drying manures, solution to solid (cm3 g(-1)) extraction ratios, and P determination method. We found little difference in WEP of single or sequential extractions. Increasing extraction ratio from 10:1 to 250:1 resulted in more WEP recovered, but in a diminishing fashion so that ratios of 200:1 and 250:1 were not significantly different. Patterns of increased WEP with extraction ratio varied with manure type, presence of bedding material, and drying treatment. Fresh and air-dried manures had similar patterns, but differed substantially from oven-dried (90 degrees C) manures. The differential effect of oven-drying on WEP was greatest for dairy and poultry manure, and less for swine manure. We analyzed water extracts colorimetrically before and after digestion, to examine the potential effect of P determination by inductively coupled plasma (ICP) spectroscopy. Digested extracts always contained more P. For manures with bedding, drying decreased the difference in P measured before and after digestion. The opposite was true for manures without bedding. Results highlight the influence of methodology on manure WEP measurement and caution needed when comparing data across studies using different WEP methods. Overall, our results point to a need for a standard manure water extraction method.  相似文献   

6.
Computer models are a rapid, inexpensive way to identify agricultural areas with a high potential for P loss, but most models poorly simulate dissolved P release from surface-applied manures to runoff. We developed a simple approach to predict dissolved P release from manures based on observed trends in laboratory extraction of P in dairy, poultry, and swine manures with water over different water to manure ratios. The approach predicted well dissolved inorganic (R2 = 0.70) and organic (R2 = 0.73) P release from manures and composts for data from leaching experiments with simulated rainfall. However, it predicted poorly (R2 = 0.18) dissolved inorganic P concentrations in runoff from soil boxes where dairy, poultry, and swine manures had been surface-applied and subjected to simulated rainfall. Multiplying predicted runoff P concentrations by the ratio of runoff to rainfall improved the relationship between measured and predicted runoff P concentrations, but runoff P was still overpredicted for dairy and swine manures. We attributed this overprediction to immediate infiltration of dissolved P in the freely draining water of dairy and swine manure slurries upon their application to soils. Further multiplying predicted runoff dissolved inorganic P concentrations by 0.35 for dairy and 0.60 for swine manures resulted in an accurate prediction of dissolved P in runoff (R2 = 0.71). The ability of our relatively simple approach to predict dissolved inorganic P concentrations in runoff from surface-applied manures indicates its potential to improve water quality models, but field testing of the approach is necessary first.  相似文献   

7.
Phosphorous (P)-31 nuclear magnetic resonance (NMR) spectroscopy is used in the analysis of P forms in extracts of soils and manures for environmental and agronomic purposes. Quantitative spectra require knowledge about spin-lattice relaxation times (T1) to ensure adequate delays between pulses. This paper determined T1 values of P forms in reconstituted (0.2 g in 0.7 mL(-1)) samples of freeze-dried 0.25 M NaOH plus 50 mM EDTA extracts of eight diverse soils (Aquept, Dystrochrept x 2, Hapludand, Rendoll, Udand, Haplostoll, and Orthod), three different manures (dairy cattle, deer, and sheep), and one epiphyte moss. Total concentrations in the reconstituted samples ranged from 5 to 175 mg Fe mL(-1), 2 to 62 mg Mn mL(-1), and 72 to 837 mg P mL(-1). Values of T1 for orthophosphate monoesters, orthophosphate diesters, and pyrophosphate varied from 0.42 to 1.69 s in soils and from 0.89 to 2.59 s in manures and the epiphyte. In contrast, T(1) for orthophosphate varied from 0.78 to 1.94 s in soils and 1.45 to 5.82 s in manures and the epiphyte. For quantitative 31P NMR, delay times should be three to five times the T1 value, translating to delays of 3 to 5 s for soils and up to 25 s for manures. If the required delay is too long then strategies such as adding paramagnetics could shorten T1, provided this does not increase line-broadening too much. A regression relationship was obtained between orthophosphate T1 values and the ratio of P concentration to Fe and Mn concentration on a w/v basis (r2= 0.97, P < 0.001), and between the T1 for all other compound classes and the ratio of P to Fe and Mn (r2= 0.70, P < 0.01). By combining measurement of Fe, Mn, and P in the reconstituted extract and these relationships, T1 can be estimated and the appropriate delay time used. If T1 is not considered and the delay time is too short, some peaks will be under- or over-represented and the relative distribution of P forms not quantitative.  相似文献   

8.
Modifying poultry diets by reducing mineral P supplementation and/or adding phytase may change the chemical composition of P in manures and affect the mobility of P in manure-amended soils. We studied the speciation of P in manures produced by broiler chickens and turkeys from either normal diets, or diets with reduced amounts of non-phytate phosphorus (NPP) and/or phytase, using a combination of chemical fractionation and synchrotron X-ray absorption near edge structure (XANES) spectroscopy. All broiler litters were rich in dicalcium phosphate (65-76%), followed by aqueous phosphate (13-18%), and phytic acid (7-20%); however, no hydroxylapatite was observed. Similarly, normal turkey manure had 77% of P as dicalcium phosphate and had no hydroxylapatite, while turkey manure from diets that had reduced NPP and phytase contained equal proportions of dicalcium phosphate (33-45%) and hydroxylapatite (35-39%). This is attributed to the higher total Ca to P ratio (>2) in modified turkey manures that resulted in transformation of more soluble (dicalcium phosphate) to less soluble P compounds (hydroxylapatite). Chemical fractionation showed that H2O-extractable P was the predominant form in broiler litter (56-77%), whereas aqueous phosphate determined with XANES was <18% indicating that H2O probably dissolved mineral forms of P (e.g., dicalcium phosphate). Results show that HCl extraction primarily removed phytic acid from broiler litters and normal turkey manure, while it removed a mixture of hydroxylapatite and phytic acid from modified turkey manures. The combination of chemical fractionation and XANES provided information about the nature of P in these manures, which may help to devise best management practices for manure use.  相似文献   

9.
Including low-phytic-acid grains in swine diets can reduce P concentrations in manure, but the influence on manure P composition is relatively unknown. To address this we analyzed manure from swine fed one of four barley (Hordeum vulgare L.) varieties. The barley types consisted of wild-type barley (CDC bold, normal barley diet) and three low-phytic-acid mutant barleys that contained similar amounts of total P but less phytic acid. The phytic acid concentrations in the mutant barleys were reduced by 32% (M422), 59% (M635), and 97% (M955) compared with that in the wild-type barley, respectively. Phosphorus concentrations were approximately one-third less in manures from animals fed low-phytic-acid barleys compared with those fed the wild-type variety. Phytic acid constituted up to 55% of the P in feed, but only trace concentrations were detected in NaOH-EDTA extracts of all manures by solution (31)P nuclear magnetic resonance (NMR) spectroscopy. Phosphate was the major P fraction in the manures (86-94% extracted P), with small concentrations of pyrophosphate and simple phosphate monoesters also present. The latter originated mainly from the hydrolysis of phospholipids during extraction and analysis. These results suggest that phytic acid is hydrolyzed in swine, possibly in the hind gut by intestinal microflora before being excreted in feces, even though the animals have little phytase activity in the gut and derive little nutritional benefit from phytate P. We conclude that feeding low-phytic-acid grains reduces total manure P concentrations and the manure P is no more soluble than P generated from normal barley diets.  相似文献   

10.
Information on the forms of P present in animal manure may improve our ability to manage manure P. In most investigations of manure P composition, only inorganic and total P are determined, and the difference between them is assigned as organic P. In this study, we explored the possibility of identifying and quantifying more specific organic P forms in animal manure with orthophosphate-releasing enzymes. Pig (Sus scrofa) manure and cattle (Bos taurus) manure were first sequentially fractionated into water-soluble P, NaHCO3-soluble P, NaOH-soluble P, HCl-soluble P, and residual P. The fractions were separately incubated with wheat phytase, alkaline phosphatase, nuclease P1, nucleotide pyrophosphatase, or their combinations. The released orthophosphate was determined by a molybdate blue method. Part of the organic P in those fractions could be identified by the enzymatic treatments as phytate (i.e., 39% for pig manure and 17% for cattle manure in water-soluble organic P), simple phosphomonoesters (i.e., 43% for pig manure and 15% for cattle manure in NaOH-soluble organic P), nucleotide-like phosphodiesters (2-12%), and nucleotide pyrophosphate (0-4%). Our data indicate that the enzymatic treatment is an effective approach to identify and quantify the organic P forms present in animal manures.  相似文献   

11.
Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.  相似文献   

12.
Traditional corn (Zea mays L.) (TC), the primary grain used in swine (Sus scrofa) diets, stores a majority of its P as phytate, which is largely unavailable for digestion by nonruminant animals. Low-phytate corn (LPC) contains similar amounts of total P but a smaller percentage of P as phytate. When fed to swine, LPC increases P utilization and reduces P content of manure. While differences in P content between manure from animals fed TC and LPC diets have been documented, solubility and lability of manure P have not been compared. Manure P was characterized in manure from swine fed either LPC or TC diets in 2000 and 2001. Total P was lower (20 vs. 34 g kg(-1)) and N to P ratio was higher (4.5 vs. 3.3) in LPC manure than in TC manure. Manures were sequentially extracted with deionized water, 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl. Extracts were analyzed for inorganic and total P. Most P (approximately 80%) in the extracts was in the inorganic form. Concentration of P in the water-extractable fraction was lower for LPC manure (10.2 g kg(-1) in 2000 and 9.7 g kg(-1) in 2001) than for TC manure (13.6 g kg(-1) in 2000 and 17.0 g kg(-1) in 2001). Percentage of total P in each extract was in the order of: H2O (60%), HCl (22%), NaHCO3 (12%), NaOH (8%), and residue (<1%). Total P and distribution of P in extracts indicates swine are able to utilize more P contained in LPC feed but the composition of P excreted in LPC manure is similar to TC manure. Solubility, crop availability, and lability of P in LPC manure should be similar to that of TC manure.  相似文献   

13.
Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.  相似文献   

14.
This study was performed to determine the forms of P and to examine the influence of oven-drying on P forms in different organic amendments. Samples of biosolids, beef and dairy cattle manures, and hog manures from sow and nursery barns were used in this study. Both fresh and oven-dried amendments were analyzed for inorganic (Pi), organic (Po), and total phosphorus using a modified Hedley fractionation technique. Water extracted about 10% of total biosolids P and 30 to 40% of total hog and cattle manure P. The amount of P extracted by NaHCO3 ranged from 21 to 32% of total P in all organic amendments except in the dairy cattle manure with 45% of total P. The labile P fraction (sum of H2O- and NaHCO3-extractable P) was 24% of biosolids P, 60% of hog manure P, and 70% of dairy cattle manure P. The residual P was about 10% in biosolids and cattle manures and 5 to 8% in hog manures. Oven-drying caused a transformation in forms of P in the organic amendments. In hog manures, H2O-extractable Po was transformed to Pi, while in the dairy manure NaHCO3-extractable P was converted to H2O-extractable Pi with oven-drying. Therefore, caution should be exercised in using oven-drying for studies that evaluate forms of P in organic amendments. Overall, these results indicate that biosolids P may be less susceptible to loss by water when added to agricultural land.  相似文献   

15.
Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy is an excellent tool with which to study soil organic P, allowing quantitative, comparative analysis of P forms. However, for 31P NMR to be tative, all peaks must be completely visible, and in their correct relative proportions. There must be no line broadening, and adequate delay times must be used to avoid saturation of peaks. The objective of this study was to examine the effects of extractants on delay times and peak saturation. Two samples (a forest litter and a mineral soil sample) and three extractants (0.25 M NaOH, NaOH plus Chelex (Bio-Rad Laboratories, Hercules, CA), and NaOH plus EDTA) were used to determine the differences in the concentration of P and cations solubilized by each extractant, and to measure spin-lattice (T1) relaxation times of P peaks in each extract. For both soil and litter, NaOH-Chelex extracted the lowest concentrations of P. For the litter sample, T1 values were short for all extractants due to the high Fe concentration remaining after extraction. For the soil sample, there were noticeable differences among the extractants. The NaOH-Chelex sample had less Fe and Mn remaining in solution after extraction than the other extractants, and the longest delay times used in the study, 6.4 s, were not long enough for quantitative analysis. Delay times of 1.5 to 2 s for the NaOH and NaOH-EDTA were adequate. Line broadening was highest in the NaOH extracts, which had the highest concentration of Fe. On the basis of these results, recommendations for future analyses of soil and litter samples by solution 31P NMR spectroscopy include: careful selection of an extractant; measurement of paramagnetic ions extracted with P; use of appropriate delay times and the minimum number of scans; and measurement of T1 values whenever possible.  相似文献   

16.
Diet modification to decrease phosphorus (P) concentration in animal feeds and manures can reduce surpluses of manure P in areas of intensive animal production. We generated turkey and broiler litters from two and three flock trials, respectively, using diets that ranged from "high" to "low" in non-phytate phosphorus (NPP) and some of which contained feed additives such as phytase. Phosphorus forms in selected litters were analyzed by sequential chemical fractionation and solution (31)P nuclear magnetic resonance (NMR) spectroscopy. Selected litters were also incubated with four contrasting soils. Reducing dietary NPP and using phytase decreased total P in litters by up to 38%. Water-soluble phosphorus (WSP) in litters was decreased 21 to 44% by feeding NPP closer to animal requirement, but was not affected by phytase addition. Solution (31)P NMR spectroscopy showed that feeding NPP closer to requirement decreased orthophosphate in litters by an average of 38% and that adding phytase to feed did not increase the concentration of orthophosphate in litters. Phytase also decreased phytate P in litters by 25 to 38%, demonstrating that it increases phytate P hydrolysis. Incorporation of litters with soils at the same total P rate increased WSP in soils relative to the control; this increase was correlated to soluble P added with litters at 5 d, but not by 29 d. Changes in soil Mehlich-3 phosphorus (M3-P) were related to total P added in litter, rather than soluble P. We conclude that feeding NPP closer to requirement and using feed additives such as phytase decrease total P concentrations in litters, while having little effect on P solubility in litters and amended soils.  相似文献   

17.
Because surface-applied manures can contribute to phosphorus (P) in runoff, we examined mechanical aeration of grasslands for reducing P transport by increasing infiltration of rainfall and binding of P with soil minerals. The effects of three aeration treatments and a control (aeration with cores, continuous-furrow "no-till" disk aeration perpendicular to the slope, slit aeration with tines, and no aeration treatment) on the export of total suspended solids, total Kjeldahl P (TKP), total dissolved P (TDP), dissolved reactive P (DRP), and bioavailable P (BAP) in runoff from grasslands with three manure treatments (broiler litter, dairy slurry, and no manure) were examined before and after simulated compaction by cattle. Plots (0.75 x 2 m) were established on a Cecil soil series with mixed tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] vegetation on 8 to 12% slopes. Manures were applied at a target rate of 30 kg P ha(-1), and simulated rainfall was applied at a rate of 85 mm h(-1). Although the impact of aeration type on P export varied before and after simulated compaction, overall results indicated that core aeration has the greatest potential for reducing P losses. Export of TKP was reduced by 55%, TDP by 62%, DRP by 61%, total BAP by 54%, and dissolved BAP by 57% on core-aerated plots with applied broiler litter as compared with the control (p < 0.05). Core and no-till disk aeration also showed potential for reducing P export from applied dairy slurry (p < 0.10). Given that Cecil soil is common in pastures receiving broiler litter in the Southern Piedmont, our results indicate that pairing core aeration of these pastures with litter application could have a widespread impact on surface water quality.  相似文献   

18.
Effective manure management to efficiently utilize organic wastes without causing environmental degradation requires a clear understanding of the transformation of P forms from diet to manure. Thus, the objective of this study was to establish quantitative relationships between P forms in diets, feces, and manures collected from U.S. Northeastern and Mid-Atlantic commercial dairy farms. Total P in diets ranged from 3.6 to 5.3 g kg(-1) dry matter, while the feces had higher P than diets (5.7-9.5 g kg(-1)) and manures had lower P (2.5-8.9 g kg(-1)) than feces. The farms with total dietary P of 4.8 to 5.3 g P kg(-1) had twofold higher concentrations of phytic acid (1647-2300 mg P kg(-1)) than farms with 3.6 to 4.0 g dietary P kg(-1) (844-1100 mg P kg(-1)). Much of the phytic acid in diets was converted to inorganic orthophosphate in the rumen as indicated by a reduction in phytic acid percentage from diets (32%) to feces (18%). The proportion of orthophosphate diesters (phospholipids, deoxyribonucleic acid [DNA]) was twice as high in feces (6.2-10%) as diets (2.4-5.3%) suggesting the excretion of microbial residues in feces. Phosphonates (aminoethyl phosphonates and phosphonolipids) were not seen in diets but were detected in feces and persisted in manures, which suggests a microbial origin. These organic compounds (phytic acid, phospholipids, DNA) were decomposed on storage of feces in slurry pits, increasing orthophosphate in manures by 9 to 12% of total P. These results suggest that reducing dietary P and typically storing feces in dairy farms will result in manure with similar chemical forms (primarily orthophosphate: 63-77%) that will be land applied. Thus, both the reduction of dietary P and storage of manure on farm are important for controlling solubility and bioavailability of P forms in soils and waters.  相似文献   

19.
An experiment was conducted to examine how potential phosphorus (P) bioavailability (inferred from speciation) differs in feed and feces collected in spring from four dairy herds representing different management systems: (i) total confinement with cows fed total mixed ration (TMR), (ii) total confinement with TMR plus P mineral supplement, (iii) a hybrid of confinement with TMR and pastoral grazing, and (iv) predominantly grazing with supplemental grains. A treatment was included that air dried feces to simulate conditions after dung deposition. Wet chemical techniques and solution (31)P nuclear magnetic resonance spectroscopy ((31)P-NMR) were used to identify P concentrations and compounds present in water (a surrogate for P in overland flow), dilute acid (0.012 M HCl, an estimate of P utilization by cattle), or NaOH-EDTA (a solution that maximizes the organic P extraction) extracts of feed and feces. In general, P concentration in feces paralleled P in feed. Air drying feces decreased water-extractable P by 13 to 61% largely due to a decrease in orthophosphate, whereas NaOH-EDTA-extractable P increased by 18 to 48%. Analysis of dilute HCl was unsuccessful due to orthophosphate precipitation when pH was adjusted to 12 for (31)P-NMR. In water extracts, more P was in bioavailable diester-P forms, undetectable by colorimetry, than in NaOH-EDTA extracts. In feed, orthophosphate dominated (46-70%), but myo-IHP varied with feed (<10% in forage samples but 43% in a TMR sample). The proportion of myo-IHP decreased in feces compared with feed via mineralization but decreased less in systems with a greater proportion of available P input (e.g., orthophosphate and phospholipids). Feed and drying effect the concentrations and forms of P in feces and their potential impact on soil and water quality. Although bioavailable P in feces from pasture-based and confined systems can be similar in spring, dung-P is distributed on a lower kg P ha(-1) rate in grazing systems. The best method to mitigate P loss from feces is to decrease P in feed.  相似文献   

20.
The most viable way to beneficially use animal manure on most farms is land application. Over the past few decades, repeated manure application has shown adverse effects on environmental quality due to phosphorus (P) runoff with rainwater, leading to eutrophication of aquatic ecosystems. Improved understanding of manure P chemistry may reduce this risk. In this research, 42 manure samples from seven animal species (beef and dairy cattle, swine, chicken, turkey, dairy goat, horse, and sheep) were sequentially fractionated with water, NaHCO?, NaOH, and HCl. Inorganic (P(i)), organic (P(o)), enzymatic hydrolyzable (P(e); monoester-, DNA-, and phytate-like P), and nonhydrolyzable P were measured in each fraction. Total dry ash P (P(t)) was measured in all manures. Total fractionated P (P(ft)) and total P(i) (P(it)) showed a strong linear relationship with P(t). However, the ratios between P(ft)/P(t) and P(it)/P(t) varied from 59 to 117% and from 28 to 96%, respectively. Water and NaHCO? extracted most of the P(i) in manure from ruminant+horse, whereas in nonruminant species a large fraction of manure P was extracted in the HCl fraction. Manure P(e) summed over all fractions (P(et)) accounted for 41 to 69% of total P(0) and 4 to 29% of P(t). The hydrolyzable pool in the majority of the manures was dominated by phytate- and DNA-like P in water, monoester- and DNA-like P in NaHCO?, and monoester- and phytate-like P in NaOH and HCl fractions. In conclusion, if one assumes that the P(et) and P(it) from the fractionation can become bioavailable, then from 34 to 100% of P(t) in animal manure would be bioavailable. This suggests the need for frequent monitoring of manure P for better manure management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号