首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate N fluxes from tile-drained watersheds have been implicated in water quality studies of the Mississippi River basin, but actual NO3-N loads from small watersheds during long periods are poorly documented. We evaluated discharge and NO3-N fluxes passing the outlet of an Iowa watershed (5134 ha) and two of its tile-drained subbasins (493 and 863 ha) from mid-1992 through 2000. The cumulative NO3-N load from the catchment was 168 kg ha(-1), and 176 and 229 kg ha(-1) from the subbasins. The outlet had greater total discharge (1831 mm) and smaller flow-weighted mean NO3-N concentration (9.2 mg L(-1)) than the subbasins, while the larger subbasin had greater discharge (1712 vs. 1559 mm) and mean NO3-N concentration (13.4 vs. 11.3 mg L(-1)) than the smaller subbasin. Concentrations exceeding 10 mg L(-1) were common, but least frequent at the outlet. Nitrate N was generally not diluted by large flows, except during 1993 flooding. The outlet showed smaller NO3-N concentrations at low flows. Relationships between discharge and NO3-N flux showed log-log slopes near 1.0 for the subbasins, and 1.2 for the outlet, considering autocorrelation and measurement-error effects. We estimated denitrification of subbasin NO3-N fluxes in a hypothetical wetland using published data. Assuming that temperature and NO3-N supply could limit denitrification, then about 20% of the NO3-N would have been denitrified by a wetland constructed to meet USDA-approved criteria. The low efficiency results from the seasonal timing and NO3-N content of large flows. Therefore, agricultural and wetland best management practices (BMPs) are needed to achieve water quality goals in tile-drained watersheds.  相似文献   

2.
Controlling nitrate leaching in irrigated agriculture   总被引:3,自引:0,他引:3  
The impact of improved irrigation and nutrient practices on ground water quality was assessed at the Nebraska Management System Evaluation Area using ground water quality data collected from 16 depths at 31 strategically located multilevel samplers three times annually from 1991 to 1996. The site was sectioned into four 13.4-ha management fields: (i) a conventional furrow-irrigated corn (Zea mays L.) field; (ii) a surge-irrigated corn field, which received 60% less water and 31% less N fertilizer than the conventional field; (iii) a center pivot-irrigated corn field, which received 66% less water and 37% less N fertilizer than the conventional field; and (iv) a center pivot-irrigated alfalfa (Medicago sativa L.) field. Dating (3H/3He) indicated that the uppermost ground water was <1 to 2 yr old and that the aquifer water was stratified with the deepest water approximately 20 yr old. Recharge during the wet growing season in 1993 reduced the average NO3-N concentration in the top 3 m 20 mg L(-1), effectively diluting and replacing the NO3-contaminated water. Nitrate concentrations in the shallow zone of the aquifer increased with depth to water. Beneath the conventional and surge-irrigated fields, shallow ground water concentrations returned to the initial 30 mg NO3-N L(-1) level by fall 1995; however, beneath the center pivot-irrigated corn field, concentrations remained at approximately 13 mg NO3-N L(-1) until fall 1996. A combination of sprinkler irrigation and N fertigation significantly reduced N leaching with only minor reductions (6%) in crop yield.  相似文献   

3.
Soil-test N recommendations augmented with PEST-optimized RZWQM simulations   总被引:1,自引:0,他引:1  
Improved understanding of year-to-year late-spring soil nitrate test (LSNT) variability could help make it more attractive to producers. We test the ability of the Root Zone Water Quality Model (RZWQM) to simulate watershed-scale variability due to the LSNT, and we use the optimized model to simulate long-term field N dynamics under related conditions. Autoregressive techniques and the automatic parameter calibration program PEST were used to show that RZWQM simulates significantly lower nitrate concentration in discharge from LSNT treatments compared with areas receiving fall N fertilizer applications within the tile-drained Walnut Creek, Iowa, watershed (>5 mg NL(-1) difference for the third year of the treatment, 1999). This result is similar to field-measured data from a paired watershed experiment. A statistical model we developed using RZWQM simulations from 1970 to 2005 shows that early-season precipitation and early-season temperature account for 90% of the interannual variation in LSNT-based fertilizer N rates. Long-term simulations with similar average N application rates for corn (Zea mays L.) (151 kg N ha(-1)) show annual average N loss in tile flow of 20.4, 22.2, and 27.3 kg N ha(-1) for LSNT, single spring, and single fall N applications. These results suggest that (i) RZWQM is a promising tool to accurately estimate the water quality effects of LSNT; (ii) the majority of N loss difference between LSNT and fall applications is because more N remains in the root zone for crop uptake; and (iii) year-to-year LSNT-based N rate differences are mainly due to variation in early-season precipitation and temperature.  相似文献   

4.
Land application of animal manures, such as pig slurry (PS), is a common practice in intensive-farming agriculture. However, this practice has a pitfall consisting of the loss of nutrients, in particular nitrate, toward water courses. The objective of this study was to evaluate nitrate leaching for three application rates of pig slurry (50, 100, and 200 Mg ha(-1)) and a control treatment of mineral fertilizer (275 kg N ha(-1)) applied to corn grown in 10 drainage lysimeters. The effects of two irrigation regimes (low vs. high irrigation efficiency) were also analyzed. In the first two irrigation events, drainage NO(3)-N concentrations as high as 145 and 69 mg L(-1) were measured in the high and moderate PS rate treatments, respectively, in the low irrigation efficiency treatments. This indicates the fast transformation of the PS ammonium into nitrate and the subsequent leaching of the transformed nitrate. Drainage NO(3)-N concentration and load increased linearly by 0.69 mg NO(3)-N L(-1) and 4.6 kg NO(3)-N ha(-1), respectively, for each 10 kg N ha(-1) applied over the minimum of 275 kg N ha(-1). An increase in irrigation efficiency did not induce a significant increase of leachate concentration and the amount of nitrate leached decreased about 65%. Application of low PS doses before sowing complemented with sidedressing N application and a good irrigation management are the key factors to reduce nitrate contamination of water courses.  相似文献   

5.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

6.
Nitrate in water removed from fields by subsurface drain ('tile') systems is often at concentrations exceeding the 10 mg N L(-1) maximum contaminant level (MCL) set by the USEPA for drinking water and has been implicated in contributing to the hypoxia problem within the northern Gulf of Mexico. Because previous research shows that N fertilizer management alone is not sufficient for reducing NO(3) concentrations in subsurface drainage below the MCL, additional approaches are needed. In this field study, we compared the NO(3) losses in tile drainage from a conventional drainage system (CN) consisting of a free-flowing pipe installed 1.2 m below the soil surface to losses in tile drainage from two alternative drainage designs. The alternative treatments were a deep tile (DT), where the tile drain was installed 0.6 m deeper than the conventional tile depth, but with the outlet maintained at 1.2 m, and a denitrification wall (DW), where trenches excavated parallel to the tile and filled with woodchips serve as additional carbon sources to increase denitrification. Four replicate 30.5- by 42.7-m field plots were installed for each treatment in 1999 and a corn-soybean rotation initiated in 2000. Over 5 yr (2001-2005) the tile flow from the DW treatment had annual average NO(3) concentrations significantly lower than the CN treatment (8.8 vs. 22.1 mg N L(-1)). This represented an annual reduction in NO(3) mass loss of 29 kg N ha(-1) or a 55% reduction in nitrate mass lost in tile drainage for the DW treatment. The DT treatment did not consistently lower NO(3) concentrations, nor reduce the annual NO(3) mass loss in drainage. The DT treatment did exhibit lower NO(3) concentrations in tile drainage than the CN treatment during late summer when tile flow rates were minimal. There was no difference in crop yields for any of the treatments. Thus, denitrification walls are able to substantially reduce NO(3) concentrations in tile drainage for at least 5 yr.  相似文献   

7.
Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate   总被引:2,自引:0,他引:2  
The relationships between N fertilizer rate, yield, and NO3 leaching need to be quantified to develop soil and crop management practices that are economically and environmentally sustainable. From 1996 through 1999, we measured yield and NO3 loss from a subsurface drained field in central Iowa at three N fertilizer rates: a low (L) rate of 67 kg ha(-1) in 1996 and 57 kg ha(-1) in 1998, a medium (M) rate of 135 kg ha(-1) in 1996 and 114 kg ha(-1) in 1998, and a high (H) rate of 202 kg ha(-1) in 1996 and 172 kg ha(-1) in 1998. Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] were grown in rotation with N fertilizer applied in the spring to corn only. For the L treatment, NO3 concentrations in the drainage water exceeded the 10 mg N L(-1) maximum contaminant level (MCL) established by the USEPA for drinking water only during the years that corn was grown. For the M and H treatments, NO3 concentrations exceeded the MCL in all years, regardless of crop grown. For all years, the NO3 mass loss in tile drainage water from the H treatment (48 kg N ha(-1)) was significantly greater than the mass losses from the M (35 kg N ha(-1)) and L (29 kg N ha(-1)) treatments, which were not significantly different. The economically optimum N fertilizer rate for corn was between 67 and 135 kg ha(-1) in 1996 and 114 and 172 kg ha(-1) in 1998, but the net N mass balance indicated that N was being mined from the soil at these N fertilizer levels and that the system would not be sustainable.  相似文献   

8.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

9.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   

10.
Water resources protection from nitrate nitrogen (NO3-N) contamination is an important public concern and a major national environmental issue. The abilities of the SOIL-SOILN model to simulate water drainage and nitrate N fluxes from orchardgrass (Dactylis glomerata L.) were evaluated using data from a 3-yr field experiment. The soil is classified as a Hagerstown silt loam soil (fine, mixed, semiactive, mesic Typic Hapludalf). Nitrate losses below the 1-m depth from N-fertilized grazed orchardgrass were measured with intact soil core lysimeters. Five N-fertilizer treatments consisted of a control, urine application in the spring, urine application in the summer, urine application in the fall, and feces application in the summer. The SOIL-SOILN models were evaluated using water drainage and nitrate flux data for 1993-1994, 1994-1995, and 1995-1996. The N rate constants from a similar experiment with inorganic fertilizer and manure treatments under corn (Zea mays L.) were used to evaluate the SOILN model under orchardgrass sod. Results indicated that the SOIL model accurately simulated water drainage for all three years. The SOILN model adequately predicted nitrate losses for three urine treatments in each year and a control treatment in 1994-1995. However, it failed to produce accurate simulations for two control treatments in 1993-1994 and 1995-1996, and feces treatments in all three years. The inaccuracy in the simulation results for the control and feces treatments seems to be related to an inadequate modeling of N transformation processes. In general, the results demonstrate the potential of the SOILN model to predict NO3-N fluxes under pasture conditions using N transformation rate constants determined through the calibration process from corn fields on similar soils.  相似文献   

11.
Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.  相似文献   

12.
Predicting nitrate leaching under potato crops using transfer functions   总被引:1,自引:0,他引:1  
Nitrate leaching is a major issue in many cultivated soils. Models that predict the major processes involved at the field scale could be used to test and improve management practices. This study aims to evaluate a simple transfer function approach to predict nitrate leaching in sandy soils. A convective lognormal transfer (CLT) function is convoluted with functional equations simulating N mineralization, plant N uptake, N fertilizer dissolution, and nitrification at the soil surface to predict solute concentrations under potato (Solanum tuberosum L.) and barley (Hordeum vulgare L.) fields as a function of drainage water. Using this approach, nitrate flux concentrations measured in drainable lysimeters (1-m soil depth) were reasonably predicted from 29 Apr. 1996 to 3 Dec. 1996. With average application rates of 16.9 g m(-2) of N fertilizer in potato crops, mean nitrate-leaching losses measured under potato were 8.5 g N m(-2). Tuber N uptake averaged 9.7 g N m(-2) and soil mineral N at start (spring) and end (fall) of N mass balance averaged 1.7 and 4.5 g N m(-2), respectively. Soil N mineralization was estimated by difference (4.3 g N m(-2) on average) and was small compared with N fertilization. Small nitrate flux concentrations at the beginning of the cropping season (May) resulted mainly from initial soil nitrate concentrations. Measured and predicted nitrate flux concentrations significantly increased at mid-season (July-August) following important drainage events coupled with complete dissolution and nitrification of N fertilizers, and declining N uptake by potato plants. Decreases in nitrate concentrations before the end of year (November-December) underlined the predominant effect of N fertilizers applied for the most part at planting acting as a pulse input of solute.  相似文献   

13.
Monitoring nitrate N (NO3-N) leaching is important in order to judge the effect that agricultural practices have on the quality of ground water and surface water. Measuring drain discharge rates and NO3-N concentrations circumvents the problem of spatial variability encountered by other methods used to quantify NO3-N leaching in the field. A new flow-proportional drainage water sampling method for submerged drains has been developed to monitor NO3-N leaching. Both low and high discharge rates can be measured accurately, and are automatically compensated for fluctuations in ditch-water levels. The total amount of NO3-N leached was 10.6 kg N ha(-1) for a tile-drained silt-loam soil during the 114-d monitoring period. The NO3-N concentrations fluctuated between 5 mg L(-1) at deep ground water levels and 15 mg L(-1) at shallow levels, due to variations in water flow. A flow-proportional drainage water sampling method is required to measure NO3-N leaching accurately under these conditions. Errors of up to 43% may occur when NO3-N concentrations in the drainage water are only measured at intervals of 30 d and when the precipitation excess is used to estimate cumulative NO3-N leaching. Measurements of NO3-N concentrations in ground water cannot be used to accurately estimate NO3-N leaching in drained soils.  相似文献   

14.
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.  相似文献   

15.
Residual soil nitrate after potato harvest   总被引:1,自引:0,他引:1  
Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.  相似文献   

16.
Agriculture in the U.S. Midwest faces the formidable challenge of improving crop productivity while simultaneously mitigating the environmental consequences of intense management. This study examined the simultaneous response of nitrate nitrogen (NO3-N) leaching losses and maize (Zea mays L.) yield to varied fertilizer N management using field observations and the Integrated BIosphere Simulator (IBIS) model. The model was validated against six years of field observations in chisel-plowed maize plots receiving an optimal (180 kg N ha(-1)) fertilizer N application and in N-unfertilized plots on a silt loam soil near Arlington, Wisconsin. Predicted values of grain yield, harvest index, plant N uptake, residue C to N ratio, leaf area index (LAI), grain N, and drainage were within 20% of observations. However, simulated NO3-N leaching losses, NO3-N concentrations, and net N mineralization exhibited less interannual variability than observations, and had higher levels of error (20-65%). Potential effects of 30% higher (234 kg N ha(-1)) and 30% lower (126 kg N ha(-1)) fertilizer N use (from optimal) on NO3-N leaching loss and maize yield were simulated. A 30% increase in fertilizer N use increased annual NO3-N leaching by 56%, while yield increased by only 1%. The NO3-N concentration in the leachate solution at 1.4 m below the soil surface was 30.7 mg L(-1). When fertilizer N use was reduced by 30% (from optimal), annual NO3-N leaching losses declined by 42% after seven years, and annual average yield only decreased by 8%. However, NO3-N concentration in the leachate solution remained above 10 mg L(-1) (11.3 mg L(-1)). Clearly, nonlinear relationships existed between changes in fertilizer use and NO3-N leaching losses over time. Simulated changes in NO3-N leaching were greater in magnitude than fertilizer N use changes.  相似文献   

17.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   

18.
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.  相似文献   

19.
This study was designed to evaluate the improved version of the Root Zone Water Quality Model (RZWQM) using 6 yr (1992-1997) of field-measured data from a field within Walnut Creek watershed located in central Iowa. Measured data included subsurface drainage flows, NO3-N concentrations and loads in subsurface drainage water, and corn (Zea mays L.) and soybean [Glycine mar (L.) Merr.] yields. The dominant soil within this field was Webster (fine-loamy, mixed, superactive, mesic Typic Endoaquolls) and cropping system was corn-soybean rotation. The model was calibrated with 1992 data and was validated with 1993 to 1997 data. Simulations of subsurface drainage flow closely matched observed data showing model efficiency of 99% (EF = 0.99), and difference (D) of 1% between measured and predicted data. The model simulated NO3-N losses with subsurface drainage water reasonably well with EF = 0.8 and D = 13%. The simulated corn grain yields were in close agreement with measured data with D < 10%. Nitrogen-scenario simulations demonstrated that corn yield response function reached a plateau when N-application rate exceeded 90 kg ha(-1). Fraction of applied N lost with subsurface drainage water varied from 7 to 16% when N-application rate varied from 30 to 180 kg ha(-1) after accounting for the nitrate loss with no-fertilizer application. These results indicate that the RZWQM has the potential to simulate the impact of N application rates on corn yields and NO3-N losses with subsurface drainage flows for agricultural fields in central Iowa.  相似文献   

20.
Various N fertilizer sources are available for lawn turf. Few field studies, however, have determined the losses of nitrate (NO(3)-N) from lawns receiving different formulations of N fertilizers. The objectives of this study were to determine the differences in NO(3)-N leaching losses among various N fertilizer sources and to ascertain when losses were most likely to occur. The field experiment was set out in a completely random design on a turf typical of the lawns in southern New England. Treatments consisted of four fertilizer sources with fast- and slow-release N formulations: (i) ammonium nitrate (AN), (ii) polymer-coated sulfur-coated urea (PCSCU), (iii) organic product, and (iv) a nonfertilized control. The experiment was conducted across three years and fertilized to supply a total of 147 kg N ha(-1) yr(-1). Percolate was collected with zero-tension lysimeters. Flow-weighted NO(3)-N concentrations were 4.6, 0.57, 0.31, and 0.18 mg L(-1) for AN, PCSCU, organic, and the control, respectively. After correcting for control losses, average annual NO(3)-N leaching losses as a percentage of N applied were 16.8% for AN, 1.7% for PCSCU, and 0.6% for organic. Results indicate that NO(3)-N leaching losses from lawn turf in southern New England occur primarily during the late fall through the early spring. To reduce the threat of NO(3)-N leaching losses, lawn turf fertilizers should be formulated with a larger percentage of slow-release N than soluble N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号