首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytically, poultry litter contains nearly all essential micronutrients but the extent of phytoavailability of these nutrients and whether cotton (Gossypium hirsutum L.) and other crop plants can receive adequate amounts of these nutrients from litter is not fully known. The objective of this research was to determine whether cotton receives sufficient amounts of Fe, Cu, Mn, and Zn from litter and estimate the efficiency of cotton in extracting these metal nutrients from litter in the absence of any other source of the micronutrients. The greenhouse research used plastic pots filled with approximately 11 kg of a 2:1 (v/v) sand to vermiculite growing mix. Cotton (cv. Stoneville 474) was grown in the pots fertilized with broiler litter at rates of 30, 60, 90, or 120 g pot(-1) in a factorial combination with four supplemental nutrient solution (NS) treatments. The nutrient solutions consisted of full Hoagland's nutrient solution (NS-full); a solution of the macronutrients N, P, K, Ca, and Mg (NS-macro); a solution of the micronutrients Fe, Zn, Mn, Cu, B, and Mo (NS-micro); and water (NS-none). Based on tissue nutrient analysis, a one-time broiler litter application supplied adequate amounts of Fe, Cu, and Mn to bring the concentration of these nutrients in upper leaves within published sufficiency ranges. Zinc, with <17 mg kg(-1) concentration in the upper leaves, was the only micronutrient below the established sufficiency range regardless of the rate of applied litter. Cotton extracted Fe and Mn more efficiently than Cu or Zn, removing as much as 8.8% of Fe and 7.2% of Mn supplied by 30 g litter pot(-1). In contrast, the extraction efficiency was 1.7% for Cu and 1.9% for Zn. Roots accumulated 58% of the total absorbed Fe and 64% of Cu, and leaves accumulated 32% of the Fe and only 13% of the Cu supplied by litter. In contrast, only 16% of the total absorbed Mn and 23% of Zn accumulated in roots while leaves accumulated 64% of the total Mn and 37% of Zn. These results demonstrate that broiler litter is a valuable source of the metal nutrients supplying Fe, Cu, and Mn in full and Zn in part, but a very large fraction of the litter-supplied metal nutrients remained in the growing mix.  相似文献   

2.
Fate of applied N in forage-based agricultural systems is important to long-term production and environmental impacts. We evaluated the factorial combination of N fertilization targeted to supply 20 g N m 2 yr(-1) and harvest strategies on soil-profile inorganic N during the first 5 yr of 'Coastal' bermudagrass [Cynodon dactylon (L.) Pers.] management. Harvest strategy had much larger effects than fertilization strategy, most notably that soil-profile inorganic N was lower when hayed than under other systems. In the upper rooting zone (0- to 0.3-m depth), soil inorganic N (initially at 3.1 g m(-2)) remained unchanged during the 5 yr under unharvested and low and high grazing pressures (0.00 +/- 0.08 g m(-2) yr(-1)), but declined with haying (-0.25 g m(-2) yr(-1)). In the lower rooting zone (0.3- to 0.9-m depth), soil inorganic N (initially at 2.9 g m(-2)) accumulated with unharvested and low and high grazing pressure (0.64 +/- 0.20 g m(-2) yr(-1)), but remained unchanged with haying (-0.06 g m(-2) yr(-1)). Below the rooting zone (0.9- to 1.5-m depth), soil inorganic N (initially at 5.8 g m(-2)) increased with unharvested and high grazing pressure (0.34 +/- 0.03 g m(-2) yr(-1)), was unchanged with low grazing pressure (-0.10 g m(-2) yr(-1)), and declined with haying (-0.50 g m(-2) yr(-1)). Applied N appears to have been efficiently utilized by forage with subsequent sequestration into soil organic matter and little movement of inorganic N below the rooting zone (< 2% of applied N), irrespective of inorganic or organic fertilization strategy designed to supply sufficient N for high animal production from grazing.  相似文献   

3.
Aluminum sulfate [alum; Al2(SO4)3] amendment of poultry litters has been suggested as a best management practice to help reduce the potential environmental effects of poultry production. Past research has shown that alum treatment reduced NH3 emissions from litters, decreased the loss in runoff of P and trace metals from litter-amended soils, improved poultry health, and reduced the costs of poultry production. We conducted a large scale, "on-farm" evaluation of alum as a poultry (broiler) litter amendment on the Delmarva peninsula to determine the effect of alum on (i) litter properties and elemental composition and (ii) the solubility of several elements in litter that are of particular concern for water quality (Al, As, Cu, P, and Zn). Alum was applied over a 16-mo period to 97 poultry houses on working poultry farms; 97 houses on other farms served as controls (no alum). Litter samples were analyzed initially and after approximately seven alum applications. We found that alum decreased litter pH and the water solubility of P, As, Cu, and Zn. Alum-treated houses also had higher litter total N, NH4-N, and total S concentrations and thus a greater overall fertilizer value than litters from the control houses. Higher litter NH4-N values also suggest that alum reduced NH3 losses from litters. Thus, alum appears to have promise as a best management practice (BMP) for poultry production. Future research should focus on the long-term transformations of P, Al, As, Cu, and Zn in soils amended with alum-treated litters.  相似文献   

4.
三峡库区土壤中微量元素有效态含量及其特征   总被引:2,自引:0,他引:2  
本文研究了微量元素在三峡库区土壤中的有效态含量以及丰缺程度,发生频率等特征,同时,初步探讨了有效态微量元素之间及其与土壤pH值,有机质含量的相关关系。  相似文献   

5.
This study investigated the ability of a 10-yr-old constructed wetland to treat metal-contaminated leachate emanating from a coal ash pile at the Widows Creek electric utility, Alabama (USA). The two vegetated cells, which were dominated by cattail (Typha latifolia L.) and soft rush (Juncus effusus L.), were very effective at removing Fe and Cd from the wastewater, but less efficient for Zn, S, B, and Mn. The concentrations were decreased by up to 99% for Fe, 91% for Cd, 63% for Zn, 61% for S, 58% for Mn, and 50% for B. Higher pH levels (>6) in standing water substantially improved the removing efficiency of the wetland for Mn only. The belowground tissues of both cattail and soft rush had high concentrations of all elements; only for Mn, however, did the concentration in the shoots exceed those in the belowground tissues. The concentrations of trace elements in fallen litter were higher than in the living shoots, but lower than in the belowground tissues. The trace element accumulation in the plants accounted for less than 2.5% of the annual loading of each trace element into the wetland. The sediments were the primary sinks for the elements removed from the wastewater. Except for Mn, the concentrations of trace elements in the upper layer (0-5 cm) of the sediment profile tended to be higher than the lower layers (5-10 and 10-15 cm). We conclude that constructed wetlands are still able to efficiently remove metals in the long term (i.e.,>10 yr after construction).  相似文献   

6.
本文建立了三峡库区土壤中有效态微量元素含量的区划原则。根据确立的有效态微量元素含量丰缺的指标,运用等值线图法,采用微机处理,最后将库区划分为八个土壤亚区。  相似文献   

7.
Fate of biosolids trace metals in a dryland wheat agroecosystem   总被引:1,自引:0,他引:1  
Biosolids land application for beneficial reuse applies varying amounts of trace metals to soils. Measuring plant-available or total soil metals is typically performed to ensure environmental protection, but these techniques do not quantify which soil phases play important roles in terms of metal release or attenuation. This study assessed the distribution of Cd, Cr, Cu, Mo, Ni, Pb, and Zn associated with soluble/exchangeable, specifically adsorbed/carbonate-bound, amorphous Mn hydroxyoxide-bound, amorphous Fe hydroxyoxide-bound, organically complexed, and residual inorganic phases. Biosolids were applied every 2 yr from 1982 to 2002 (except in 1998) at rates of 0, 6.7, 13.4, 26.8, and 40.3 dry Mg biosolids ha(-)(1) to 3.6- by 17.1-m plots. In 2003, 0- to 20-cm and 20- to 60-cm soil depths were collected and subjected to 4 mol L(-1) HNO(3) digestion and sequential extraction. Trace metals were concentrated in the 0- to 20-cm depth, with no significant observable downward movement using 4 mol L(-1) HNO(3) or sequential extraction. The sequential extraction showed nearly all measurable Cd present in relatively mobile forms and Cr, Cu, Mo, Ni, Pb, and Zn present in more resistant phases. Biosolids application did not affect Cd or Cr fractionation but did increase relatively immobile Cu, Mo, and Zn phases and relatively mobile Cu, Ni, and Pb pools. The mobile phases have not contributed to significant downward metal movement. Long-term, repeated biosolids applications at rates considered several times greater than agronomic levels should not significantly contribute to downward metal transport and ground water contamination for soils under similar climatic conditions, agronomic practices, and histories.  相似文献   

8.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

9.
刘永祺  杨柳  陈西平 《四川环境》2009,28(5):104-106,123
本文用随机布点法,采集了简阳东溪镇土壤样品29个,分析了土壤中Cd、Zn、Ni、Cu、Mn、Pb六种元素含量,用Shapiro-Wilk法和偏态系数检验了土壤中的元素含量分布类型,结果六种元素含量均为正态分布。根据元素含量类型分布,统计简阳东溪镇土壤中六种元素平均含量为:Cd0.295ppm、Zn62.5ppm、Ni27.49ppm、Cu23.25ppm、bin157.25ppm、Pb17.47ppm。  相似文献   

10.
Agricultural utilization of biosolids poses a potential risk to ruminant animals due to transfer of Mo from biosolids to forage to the animal in amounts large enough to suppress Cu uptake by the animal. Alkaline-stabilized biosolids (ASB) must be given particular consideration in assessment of Mo risk because the high pH of these biosolids could increase Mo and decrease Cu uptake by forage legumes. In this 3-yr field experiment, ASB and ground agricultural limestone (AL) were applied based on their alkalinity at rates equivalent to 0, 0.5, 1.0, and 2.0 times the lime requirement of the soil and alfalfa (Medicago sativa L.) was grown. Alfalfa yield was similar with AL and ASB except in the second year when ASB produced larger yields, apparently due to increased B availability with ASB. Application of ASB did not detectably increase extractable soil Mo (0- to 15-cm depth), but increased alfalfa Mo uptake in all cuttings with yield-weighted uptake coefficients (UCs) of 8.07 and 7.11 following the first and second ASB applications, respectively. Although ASB increased extractable soil Cu, and alfalfa Cu content was greater with ASB than with AL, yield-weighted alfalfa Cu to Mo ratio was decreased by ASB to levels near 3. These results suggest that ASB may have a greater effect on Mo uptake and Cu to Mo ratio of forage legumes than do other biosolids. Additional research is needed to determine implications of larger Mo cumulative loading with ASB for Mo risk, particularly in the soil pH range of 7 to 8.  相似文献   

11.
There is a need to evaluate the interference of pig slurry rate and the terrain slope in the chemical elements losses from the soil. This work aimed to quantify water and chemical element losses by surface runoff due to terrain slope and pig slurry rate (PS) in two soils with contrasting textures. Two trials were evaluated in 2018 and 2019 in Cambisol and Nitisol. Rates of 0, 22.5, 45, and 90 m3 ha−1 yr−1 of PS were applied superficially in sites with slopes ranging from 10% to 35%. Perennial forage grass Tifton 85 (Cynodon dactylon) was grown as summer crop and ryegrass (Lolium multiflorum) was sown in the cold seasons in a field environment. Were determined the runoff, the volume of water, and chemical elements (Al, Ca, P, Mg, Cd, Cr, Cu, Mn, Fe, Pb, and Zn) lost by the surface runoff after natural rainfall. Increasing land slope elevated water losses substantially, on average 23.4 times in Cambisol and 10.8 times in Nitisol. This increase resulted in average increases of 27.6 and 12.4 times in the losses of the chemical elements analyzed for Cambisol and Nitisol, respectively. There was a reduction in water losses by surface runoff due to increased PS rates applied in both sites. The increased PS rate affected the losses of Cr and Cu in Cambisol and P, Mg, Cd, and Cu in Nitisol. The clayey soil potentiated the water and chemical elements losses by surface runoff in relation to the soil with lower clay content. Regardless of the soil, water and chemical element losses are maximized at higher slopes.  相似文献   

12.
Trace element speciation in poultry litter   总被引:8,自引:0,他引:8  
Trace elements are added to poultry feed for disease prevention and enhanced feed efficiency. High concentrations are found in poultry litter (PL), which raises concerns regarding trace element loading of soils. Trace metal cation solubility from PL may be enhanced by complexation with dissolved organic carbon (DOC). Mineralization of organo-As compounds may result in more toxic species such as As(III) and As(V). Speciation of these elements in PL leachates should assist in predicting their fate in soil. Elemental concentrations of 40 PL samples from the southeastern USA were determined. Water-soluble extractions (WSE) were fractionated into hydrophobic, anionic, and cationic species with solid-phase extraction columns. Arsenic speciation of seven As species, including the main As poultry feed additives, roxarsone (ROX; 3-nitro-4-hydroxyphenylarsonic acid) and p-arsanilic acid (p-ASA; 4-aminophenylarsonic acid), was performed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Total As concentrations in the litter varied from 1 to 39 mg kg(-1), averaging 16 mg kg(-1). Mean total Cu, Ni, and Zn concentrations were 479, 11, and 373 mg kg(-1), respectively. Copper and Ni were relatively soluble (49 and 41% respectively) while only 6% of Zn was soluble. Arsenic was highly soluble with an average of 71% WSE. Roxarsone was the major As species in 50% of PL samples. However, the presence of As(V) as the major species in 50% of the PL samples indicates that mineralization of ROX had occurred. The high solubility of As from litter and its apparent ready mineralization to inorganic forms coupled with the large quantity of litter that is annually land-applied in the USA suggests a potential detrimental effect on soil and water quality in the long term.  相似文献   

13.
为探讨蓖麻(Ricinus communist L.)对锰矿区土壤生态修复及能源化利用潜力,将不同品种蓖麻湘蓖1号和淄蓖7号播种在锰尾矿库土壤上,进入生殖生长阶段时采收全株,测定栽植土壤及植株根、茎、叶中5种重金属元素含量。结果显示:土壤中Mn平均含量最高达7884.96 mg&#183;kg-1,超过国家规定的土壤环境质量域级标准6.5倍;湘蓖1号不同器官的Mn浓度从高至低为根&gt;叶&gt;茎,淄蓖7号不同器官Mn含量叶&gt;茎&gt;根,其叶中Mn平均浓度最高为765.43 mg&#183;kg-1,较湘蓖1号叶中的平均含量高出79.53%, Pb、Cu、Cr含量及叶/根比值均大于湘蓖1号;植株体内重金属含量与土壤中重金属浓度的相关分析表明,重金属的积累量和转移量,受到土壤中几种重金属元素的共同影响。结果说明:2个品种的蓖麻均可以作为锰矿区能源化修复利用,对重金属的吸收和转运在品种间存在差异,淄蓖7号地上部分对重金属的迁移能力强于湘蓖1号。  相似文献   

14.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

15.
Manure application supplies plant nutrients, but also leads to trace element accumulation in soil. This study investigated total and EDTA-extractable B, Cd, Co, Cu and Zn in soil after 25 annual manure applications. The residual effect of 14 annual manure applications followed by 11 yr with no applications was also investigated. Manure was applied at 0, 30, 60 and 90 Mg ha(-1) yr(-1) (wet weight) under rainfed (treatments Mr0, Mr30, Mr60, and Mr90) and at 0, 60, 120 and 180 Mg ha(-1) yr(-1) under irrigated conditions (Mi0, Mi60, Mi120, and Mi180). The manure applications had no significant effect on soil B, Cd and Co content under both rainfed and irrigated conditions, but significantly increased total Cu and Zn content under irrigated conditions with Zn in Mi120 and Mi180 reaching the lower maximum concentration (MAC) level set by the European Community. Manure application also significantly increased EDTA-extractable Cd and Zn content in soil. Up to 27% of the total Cd (0.156 mg kg(-1)) and 21% of total Zn (38 mg kg(-1)) are found in EDTA-extractable form (Mi180 at 0-15 cm). EDTA-extractable Cd and Zn content was also significantly elevated in the irrigated residual plots due to the higher manure rates used. Thus, the impacts of cattle manure application on trace elements in soil are long lasting. Elevated Cd and Zn are a concern as other studies have linked them with certain types of cancers and human illnesses.  相似文献   

16.
Constructed wetlands are one method under investigation for the remediation of trace element-contaminated agricultural drainwater. A greater understanding of the retention of trace elements by the bulk soil and soil constituents is necessary for their safe and effective use. To determine the capacity of soil, calcite, and goethite-coated quartz sand for retention of As, Mo, and V under field conditions, an in situ method was used whereby permeable bags containing those minerals were placed near the sediment surface of a flow-through constructed wetland for 3 or 12 mo. Accumulations of As, Mo, and V occurred on goethite-coated sand. Concentrations of Mo on goethite-coated sand were much higher in samples from a wetland cell with a water depth of 15 cm (38.23 +/- 7.27 mg kg(-1)) compared with those from a cell with a water depth of 3 cm (8.30 +/- 1.45 mg kg(-1)). Calcite sorbed no As and low amounts of Mo and V, indicating that it is not an important sink for those elements under these conditions. In soil bags, total As and V concentrations showed little change over 12 mo. Molybdenum accumulated in the soil bags, resulting in total concentrations (12 mo) of 27.22 +/- 2.69 mg kg(-1) and 11.42 +/- 1.35 mg kg(-1) at water depths of 15 and 3 cm, respectively. Nearly half of the Mo accumulation on soil became water soluble after air-drying. This has important implications for systems that may undergo changes in redox status, possibly resulting in large fluxes of water-soluble Mo.  相似文献   

17.
Agronomic use of biosolids as a fertilizer material remains controversial in part due to public concerns regarding the potential pollution of soils, crop tissue, and ground water by excess nutrients and trace elements in biosolids. This study was designed to assess the effects of long-term commercial-scale application of biosolids on soils and crop tissue sampled from 18 production farms throughout Pennsylvania. Biosolids application rates ranged from 5 to 159 Mg ha(-1) on a dry weight basis. Soil cores and crop tissue samples from corn (Zea mays L.), soybean (Glycine spp.), alfalfa (Medicago sativa L.), orchardgrass (Dactylis spp.) hay, and/or sorghum [Sorghum bicolor (L.) Moench] were collected for three years from georeferenced locations at each farm. Samples were tested for nutrients, trace elements, and other variables. Biosolids-treated fields had more post-growing season soil NO3 and Ca and less soil K than control fields and there was some evidence that soil P concentrations were higher in treated fields. The soil concentrations of Cu, Cr, Hg, Mo, Mn, Pb, and Zn were higher in biosolids-treated fields than in control fields; however, differences were < or = 0.06 of the USEPA Part 503 cumulative pollutant loading rates (CPLRs). There were no differences in the concentrations of measured nutrients or trace elements in the crop tissue grown on treated or control fields at any time during the study. Commercial-scale biosolids application resulted in soil trace element increases that were in line with expected increases based on estimated trace element loading. Excess NO3 and apparent P buildup indicates a need to reassess biosolids nutrient management practices.  相似文献   

18.
The modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (or Bureau Communautaire de Reference, BCR) was used to predict trace element mobility in soils affected by an accidental spill comprising arsenopyrite- and heavy metal-enriched sludge particles and acid waste waters. The procedure was used to obtain the distribution of both the major (Al, Ca, Fe, Mg, and Mn) and trace elements (As, Bi, Cd, Cu, Pb, Tl, and Zn) in 13 soils of contrasting properties with various levels of contamination and in the sludge itself. The distributions of the major elements enabled us to confirm the main soil fractions solubilized in each of the three steps, and, in turn, to detect the presence of pyritic sludge particles by the high Fe extractability obtained in the third step. Cadmium was identified as being the most mobile of the elements, having the highest extractability in the first step, followed by Zn and Cu, Lead, Tl, Bi, and As were shown to be poorly mobile or nonmobile. In the case of some of the trace elements, the residual fractions decreased at higher levels of contamination, which was attributed to the anthropogenic contributions to the polluted samples. Comparison with soil-plant transfer factors, calculated in plants growing in the affected area, indicated that a relative sequence of trace element mobility was well predicted from data of the first step.  相似文献   

19.
Large and repeated manure applications can exceed the P sorption capacity of soil and increase P leaching and losses through subsurface drainage. The objective of this study was to evaluate the fate of P applied with increasing N rates in dairy wastewater or poultry litter on grassland during a 4-yr period. In addition to P recovery in forage, soil-test phosphorus (STP) was monitored at depths to 180 cm in a Darco loamy sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) twice annually. A split-plot arrangement of a randomized complete block design comprised four annual N rates (0, 250, 500, and 1000 kg ha(-1)) for each nutrient source on coastal bermudagrass [Cynodon dactylon (L.) Pers.] over-seeded with ryegrass (Lolium multiflorum L. cv. TAM90). Increasing annual rates of N and P in wastewater and poultry litter increased P removal in forage (P = 0.001). At the highest N rate of each nutrient source, less than 13% of applied P was recovered in forage. The highest N rates delivered 8 times more P in wastewater or 15 times more P in poultry litter than was removed in forage harvests during an average year. Compared with controls, annual P rates up to 188 kg ha(-1) in dairy wastewater did not increase STP concentrations at depths below 30 cm. In contrast, the highest annual P rate (590 kg ha(-1)) in poultry litter increased STP above that of controls at depth intervals to 120 cm during the first year of sampling. Increases in STP at depths below 30 cm in the Darco soil were indicative of excessive P rates that could contribute to nonpoint-source pollution in outflows from subsoil through subsurface drainage.  相似文献   

20.
Some of the most fertile agricultural land in Atlantic Canada includes dykelands, which were developed from rich salt marshes along the Bay of Fundy through the construction of dykes. A 2-yr field experiment was conducted on dykeland soil to evaluate the effect of fertility treatments: source-separated municipal solid waste (SS-MSW) compost, solid manure, commercial fertilizer, and gypsum on (1) timothy/red clover forage productivity, (2) N, S, and other nutrients uptake, and (3) residual NO(3)-N and NH(4)-N in the soil profile. All fertility treatments increased dry matter yields from the two cuts each year relative to the control. Residual soil NO(3)-N and NH(4)-N concentrations in the fall of the second year decreased with depth, and beyond 20-cm depth were lower than 1 mg kg(-1). Gypsum application equivalent to 40 kg S ha(-1) increased dry matter yields and N uptake by forage, and increased soil Mehlich 3-extractable S, tissue S, and uptake of S, Ca, P, Cu, Fe, and Mn relative to the control. High rates of compost can provide sufficient N, S, and perhaps other nutrients to a perennial forage system under the cool wet climate of Atlantic Canada with no heavy metal enrichment of forage. However, the chemical N provided greater total N uptake than organic sources, except the high rate of compost, suggesting that the N availability from organic sources was not well synchronized with forage N demand. Municipal solid waste compost may also increase soil and forage tissue Na, which might be of concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号