首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Soil ingestion by children is an important pathway in assessing public health risks associated with exposure to arsenic-contaminated soils. Soil chemical methods are available to extract various pools of soil arsenic, but their ability to measure bioavailable arsenic from soil ingestion is unknown. Arsenic extracted by five commonly used soil extractants was compared with bioavailable arsenic measured in vivo by immature swine (Sus scrofa) dosing trials. Fifteen contaminated soils that contained 233 to 17 500 mg kg(-1) arsenic were studied. Soil extractants were selected to dissolve surficially adsorbed and/or readily soluble arsenic (water, 1 M sodium acetate, 0.1 M Na2HPO4/0.1 M NaH2PO4) and arsenic in Fe and Mn oxide minerals (hydroxylamine hydrochloride, ammonium oxalate). The mean percent of total arsenic extracted was: ammonium oxalate (53.6%) > or = hydroxylamine hydrochloride (51.7%) > phosphate (10.5%), acetate (7.16%) > water (0.15%). The strongest relationship between arsenic determined by soil chemical extraction and in vivo bioavailable arsenic was found for hydroxylamine hydrochloride extractant (r = 0.88, significant at the 0.01 probability level). Comparison of the amount of arsenic extracted by soil methods with bioavailable arsenic showed the following trend: ammonium oxalate, hydroxylamine hydrochloride > in vivo > phosphate, acetate > water. The amount of arsenic dissolved in the stomach (potentially bioavailable) is between surficially adsorbed (extracted by phosphate or acetate) and surficially adsorbed + nonsurficial forms in Fe and Mn oxides (extracted by hydroxylamine hydrochloride or ammonium oxalate). Soil extraction methods that dissolve some of the amorphous Fe, such as hydroxylamine hydrochloride, can be designed to provide closer estimates of bioavailable arsenic.  相似文献   

2.
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (alpha-Al(2)O(3)) and ferrihydrite (Fe(5)HO(8).4H(2)O). The Pb-sorbed minerals were placed in a simulated gastrointestinal tract (in vitro) to simulate ingestion of Pb-contaminated soil. The changes in Pb speciation were determined using extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge spectroscopy (XANES). Both corundum (sorption maximum of 2.13 g kg(-1)) and ferrihydrite (sorption maximum of 38.6 g kg(-1)) have been shown to sorb Pb, with ferrihydrite having a very high affinity for Pb. The gastric bioaccessible Pb for corundum was >85% for corundum when the concentration of Pb was >200 mg kg(-1). Bioaccessible Pb was not detectable at 4. However, much of the sorbed Pb will become bioaccessible under gastric conditions (pH 1.5-2.5) if this soil is ingested. Caution should be used before using these materials to remediate a soil where soil ingestion is an important exposure pathway.  相似文献   

3.
In situ stabilization of Pb contaminated soils can be accomplished by adding P and Mn(IV) oxide. However, the long-term efficacy of in situ stabilization under continual P removal through plant growth is unknown. Moreover, the effects these treatments have on phytoavailability of other metals (Cd and Zn) commonly associated with Pb in soil are not well understood. Greenhouse experiments using sudax [Sorghum vulgare (L.) Moench] and Swiss chard [Beta vulgaris (L.) Koch] were carried out to evaluate the effects of plant growth on soil Pb bioavailability to humans after addition of P and other amendments, and the effects of these treatments on Pb, Cd, and Zn phytoavailability in three metal-contaminated soils. Eight treatments were used: zero P; 2500 mg of P as triple superphosphate (TSP); 5000 mg of P as TSP or phosphate rock (PR); 5000 mg of Mn oxide/kg; and combinations of Mn oxide and P as TSP or PR. The addition of P and/or Mn oxide significantly reduced bioavailable Pb, as measured by the physiologically based extraction test (PBET), in soils compared with the control even after extensive cropping. The PBET data also suggested that removal of P from soluble P sources by plants could negate the beneficial effects of P on bioavailable Pb, unless sufficient soluble P was added or soluble P was combined with Mn oxide. In general, Ph, Cd, and Zn concentrations in shoot tissues of sudax and Swiss chard were reduced significantly by TSP and did not change with the addition of PR. The combination of PR and Mn oxide significantly reduced Pb concentrations in plants compared with the control.  相似文献   

4.
The immobilization of Pb in contaminated soils as pyromorphite [Pb(5)(PO(4))(3)Cl, OH, F] through the addition of various phosphate amendments has gained much attention in the remediation community. However, it is difficult to fully determine the speciation and amount of soil Pb converted to pyromorphite by previously employed methods, such as selective sequential extraction procedures and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, which often lead to erroneous results in these non-equilibrated and heterogeneous systems. Statistical analysis by linear combination fitting (LCF) applied to X-ray absorption fine structure (XAFS) spectroscopic data of Pb-contaminated soil samples relative to known Pb reference material provides direct, in situ evidence of dominate Pb species in the amended soils without chemical or physical disruption to the Pb species as well as a weighted quantification output. The LCF-XAFS approach illustrated that pyromorphite concentration ranged from 0% (control soil) to 45% (1% phosphoric acid amendment, residence time of 32 mo) relative to the total Pb concentration. The Pb speciation in the nonamended control soil included Pb-sulfur species (galena + angelsite = 53%), adsorbed Pb (inner-sphere + outer-sphere + organic-bound = 45%), and Pb-carbonate phases (cerussite + hydrocerussite = 2%). The addition of P promoted pyromorphite formation and the rate of formation increased with increasing P concentration (up to 45%). The supplemental addition of an iron amendment as an iron-rich byproduct with triple superphosphate (TSP) enhanced pyromorphite formation relative to independent TSP amendment of like concentrations (41 versus 29%). However, the amendment of biosolids and biosolids plus TSP observed little pyromorphite formation (1-16% of total Pb), but a significant increase of sorbed Pb was determined by LCF-XAFS.  相似文献   

5.
In situ stabilization of soil lead using phosphorus   总被引:4,自引:0,他引:4  
In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2,500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5,000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2,500 to 5,000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.  相似文献   

6.
Due to variations in soil physicochemical properties, species physiology, and contaminant speciation, Pb toxicity is difficult to evaluate without conducting in vivo dose-response studies. Such tests, however, are expensive and time consuming, making them impractical to use in assessment and management of contaminated environments. One possible alternative is to develop a physiologically based extraction test (PBET) that can be used to measure relative bioaccessibility. We developed and correlated a PBET designed to measure the bioaccessibility of Pb to waterfowl (W-PBET) in mine-impacted soils located in the Coeur d'Alene River Basin, Idaho. The W-PBET was also used to evaluate the impact of P amendments on Pb bioavailability. The W-PBET results were correlated to waterfowl-tissue Pb levels from a mallard duck [Anas platyrhynchos (L.)] feeding study. The W-PBET Pb concentrations were significantly less in the P-amended soils than in the unamended soils. Results from this study show that the W-PBET can be used to assess relative changes in Pb bioaccessibility to waterfowl in these mine-impacted soils, and therefore will be a valuable test to help manage and remediate contaminated soils.  相似文献   

7.
Phosphorus (P) loss in overland flow varies with spatial distribution of soil P, management, and hydrological pathways. The effect of flow time, flowpath length, and manure position on P loss in overland flow from two central Pennsylvania soils packed in boxes of varying length (0.5, 1.0, 1.5, 2.75, and 4.0 m long x 15 cm wide x 5 cm deep) were examined by collecting flow samples at 5-min intervals for 30 min (50 mm h(-1) rainfall) without and with 75 kg P ha(-1) applied as swine (Sus scrofa) manure over 0.5 m of the box slope length at distances of 0 to 3.5 m from the downslope collection point. Dissolved reactive P concentration was more closely related to the proportion of clay in sediment of overland flow before (r = 0.98) than after (r = 0.56) manure application. This was attributed to the transport of larger, low-density particles after applying manure. The concentration of dissolved and particulate P fractions decreased with increasing flowpath length, due to dilution rather than sorption of P by surface soil during overland flow. Total P loss (mainly as particulate P) from the Watson channery silt loam (fine-loamy, mixed, active, mesic Typic Fragiudult) was more than from Berks channery silt loam (loamy-skeletal, mixed, active, mesic Typic Dystrudept), even with manure applied. Thus, while P loss in overland flow is affected by where manure is applied relative to flowpath length, initial soil P concentration should not be discounted when looking at areas of potential P loss within a watershed.  相似文献   

8.
Major and trace elements of selected pedons in the USA   总被引:6,自引:0,他引:6  
Few studies of soil geochemistry over large geographic areas exist, especially studies encompassing data from major pedogenic horizons that evaluate both native concentrations of elements and anthropogenically contaminated soils. In this study, pedons (n = 486) were analyzed for trace (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn) and major (Al, Ca, Fe, K, Mg, Na, P, Si, Ti, Zr) elements, as well as other soil properties. The objectives were to (i) determine the concentration range of selected elements in a variety of U.S. soils with and without known anthropogenic additions, (ii) illustrate the association of elemental source and content by assessing trace elemental content for several selected pedons, and (iii) evaluate relationships among and between elements and other soil properties. Trace element concentrations in the non-anthropogenic dataset (NAD) were in the order Mn > (Zn, Cr, Ni, Cu) > (Pb, Co) > (Cd, Hg), with greatest mean total concentrations for the Andisol order. Geometric means by horizon indicate that trace elements are concentrated in surface and/or B horizons over C horizons. Median values for trace elements are significantly higher in surface horizons of the anthropogenic dataset (AD) over the NAD. Total Al, Fe, cation exchange capacity (CEC), organic C, pH, and clay exhibit significant correlations (0.56, 0.74, 0.50, 0.31, 0.16, and 0.30, respectively) with total trace element concentrations of all horizons of the NAD. Manganese shows the best inter-element correlation (0.33) with these associated total concentrations. Total Fe has one of the strongest relationships, explaining 55 and 30% of the variation in total trace element concentrations for all horizons in the NAD and AD, respectively.  相似文献   

9.
A growth room experiment was conducted to evaluate the bioavailability of Cu, Mn, Zn, Ca, Fe, K, Mg, P, S, As, B, Cd, Co, Cr, Hg, Mo, Na, Ni, Pb, and Se from a sandy loam soil amended with source-separated municipal solid waste (SSMSW) compost. Basil (Ocimum basilicum L.) and Swiss chard (Beta vulgaris L.) were amended with 0, 20, 40, and 60% SSMSW compost to soil (by volume) mixture. Soils and compost were sequentially extracted to fractionate Cu, Pb, and Zn into exchangeable (EXCH), iron- and manganese-oxide-bound (FeMnOX), organic-matter (OM), and structurally bound (SB) forms. Overall, in both species, the proportion of Cu, Pb, and Zn levels in different fractions followed the sequence: SB > OM > FeMnOX > EXCH for Cu; FeMnOX = SB > OM > EXCH for Pb; and FeMnOX > SB = EXCH > OM for Zn. Application of SSMSW compost increased soil pH and electrical conductivity (EC), and increased the concentration of Cu, Pb, and Zn in all fractions, but not EXCH Pb. Basil yields were greatest in the 20% treatment, but Swiss chard yields were greater in all compost-amended soils relative to the unamended soil. Basil plants in 20 or 40% compost treatments reached flowering earlier than plants from other treatments. Additions of SSMSW compost to soil altered basil essential oil, but basil oil was free of metals. The results from this study suggest that mature SSMSW compost with concentrations of Cu, Pb, Mo, and Zn of 311, 223, 17, and 767 mg/kg, respectively, could be used as a soil conditioner without phytotoxic effects on agricultural crops and without increasing the normal range of Cu, Pb, and Zn in crop tissue. However, the long-term effect of the accumulation of heavy metals in soils needs to be carefully considered.  相似文献   

10.
Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.  相似文献   

11.
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.  相似文献   

12.
Phosphate rock (PR) and phosphoric acid (PA) are an effective combination of P sources for immobilizing Pb in contaminated soils. This column experiment examined the effectiveness of different application methods on Pb immobilization in a contaminated soil. Phosphate was applied at a P/Pb molar ratio of 4 with half as PR and half PA. While PR was mixed with the soil or placed as a layer, aqueous PA was applied from the top of the column as one or two applications. After 4 wk of incubation, total and soluble Pb and P, TCLP-Pb (toxicity characteristic leaching procedure) and PBET-Pb (physiologically-based extraction test) in the P-treated soil were determined. Phosphate addition effectively reduced leachable Pb to below the EPA drinking water standard of 15 microg L(-1) in all treatments. Mixing both PA and PR with the soil was the most effective method in Pb immobilization, reducing TCLP-Pb by up to 95% and PBET-Pb by 25 to 42%. Application of PR as a layer in the soil column was the most effective in reducing Pb migration (by 73-79%) and minimizing soil acidification and P entrophication, potential drawbacks of PA. Applying PA in two applications was less effective than one application. Mixing PR and PA with the soil plus placing PR as a layer can be employed for effective remediation of Pb-contaminated soils, reducing Pb leachability, bioavailability, and mobility while minimizing soil acidification and P entrophication.  相似文献   

13.
The potential risk of surface and ground water contamination by phosphorus (P) and heavy metals leached from compost-based containerized media has become an environmental concern. Solubility and fractionation of P and heavy metals were evaluated in media containing 0, 25, 50, 75, or 100% compost derived from biosolids and yard trimmings for potential impacts on the environment. As compost proportion in peat-based media increased from 0 to 100%, concentrations of total P, Cd, Cu, Ni, Pb, Zn, and Mn in the media increased whereas concentrations of total Co and Cr decreased. Except for Cu, all heavy metals in the water-soluble fraction decreased with increasing compost proportion in the media, because of higher Fe, Al, and Ca concentrations and pH values of the composts than the peat. When the media pH is controlled and maintained at normal range of plant growth (5.5-6.5), leaching of the heavy metals is minimal. Incorporation of compost to the peat-based media also decreased the proportion of total P that was water-soluble. However, concentrations of bioavailable inorganic phosphorus (NaHCO3-IP), readily mineralizable organic phosphorus (NaHCO3-OP), potentially bioavailable inorganic phosphorus (NaOH-IP), and potentially bioavailable organic phosphorus (NaOH-OP) were still higher in the media amended with compost because of higher total P concentration in the compost. Further study is needed to verify if less or no topdressing of chemical P fertilizer should be applied to the compost-amended media to minimize P effect on the environment when compost-amended potting media are used for nursery or greenhouse crop production systems.  相似文献   

14.
Although nutrient-rich manure biochars are expected to be an effective heavy metal stabilizer in agricultural and contaminated soils, systematic studies are lacking to predict the influence of manure variety and pyrolysis temperature on metal-binding potentials. In this study, biochars produced from five manure varieties (dairy, paved feedlot, swine solids, poultry litter, and turkey litter) at two pyrolytic temperatures (350 and 700°C) were examined for the stabilization of Pb, Cu, Ni, and Cd in a weathered, acidic Norfolk loamy sand (fine-loamy, kaolinitic, thermic, Typic Kandiudult). Equilibrium concentrations in the aqueous phase were determined for heavy metals (Cu, Ni, Cd, and Pb) and additional selected elements (Na, P, S, Ca, Mg, Al, and K); these were analyzed by positive matrix factorization to quantitatively determine the factors responsible for the biochar's ability to bind the selected heavy metals in soil. Concurrently with the greatest increase in pH and highest equilibrium Na, S, and K concentrations, poultry litter, turkey litter, and feedlot 700°C biochar exhibited the greatest heavy metal retention. In contrast, manure varieties containing disproportionately high (swine) and low (dairy) ash, P, and other elements were the least effective stabilizers. Regardless of the manure type, proton nuclear magnetic resonance analyses showed the removal of leachable aliphatic and nitrogen-containing heteroaromatic functional groups at the higher (700°C) pyrolysis temperature. Consistently greater Cu retention by the 700°C biochar indicated the mobilization of Cu by 350°C biochar-born dissolved organic carbon; however, the influence of other temperature-dependent biochar characteristics cannot be ruled out.  相似文献   

15.
The most viable way to beneficially use animal manure on most farms is land application. Over the past few decades, repeated manure application has shown adverse effects on environmental quality due to phosphorus (P) runoff with rainwater, leading to eutrophication of aquatic ecosystems. Improved understanding of manure P chemistry may reduce this risk. In this research, 42 manure samples from seven animal species (beef and dairy cattle, swine, chicken, turkey, dairy goat, horse, and sheep) were sequentially fractionated with water, NaHCO?, NaOH, and HCl. Inorganic (P(i)), organic (P(o)), enzymatic hydrolyzable (P(e); monoester-, DNA-, and phytate-like P), and nonhydrolyzable P were measured in each fraction. Total dry ash P (P(t)) was measured in all manures. Total fractionated P (P(ft)) and total P(i) (P(it)) showed a strong linear relationship with P(t). However, the ratios between P(ft)/P(t) and P(it)/P(t) varied from 59 to 117% and from 28 to 96%, respectively. Water and NaHCO? extracted most of the P(i) in manure from ruminant+horse, whereas in nonruminant species a large fraction of manure P was extracted in the HCl fraction. Manure P(e) summed over all fractions (P(et)) accounted for 41 to 69% of total P(0) and 4 to 29% of P(t). The hydrolyzable pool in the majority of the manures was dominated by phytate- and DNA-like P in water, monoester- and DNA-like P in NaHCO?, and monoester- and phytate-like P in NaOH and HCl fractions. In conclusion, if one assumes that the P(et) and P(it) from the fractionation can become bioavailable, then from 34 to 100% of P(t) in animal manure would be bioavailable. This suggests the need for frequent monitoring of manure P for better manure management practices.  相似文献   

16.
Phosphate treatments can reduce metal dissolution and transport from contaminated soils. However, diammonium phosphate (DAP) has not been extensively tested as a chemical immobilization treatment. This study was conducted to evaluate DAP as a chemical immobilization treatment and to investigate potential solids controlling metal solubility in DAP-amended soils. Soil contaminated with Cd, Pb, Zn, and As was collected from a former smelter site. The DAP treatments of 460, 920, and 2300 mg P kg-1 and an untreated check were evaluated using solute transport experiments. Increasing DAP decreased total metal transported. Application of 2300 mg P kg-1 was the most effective for immobilizing Cd, Pb, and Zn eluted from the contaminated soil. Metal elution curves fitted with a transport model showed that DAP treatment increased retardation (R) 2-fold for Cd, 6-fold for Zn, and 3.5-fold for Pb. Distribution coefficients (Kd) increased with P application from 4.0 to 9.0 L kg-1 for Cd, from 2.9 to 10.8 L kg-1 for Pb, and from 2.5 to 17.1 L kg-1 for Zn. Increased Kd values with additional DAP treatment indicated reduced partitioning of sorbed and/or precipitated metal released to mobile metal phases and a concomitant decrease in the concentration of mobile heavy metal species. Activity-ratio diagrams indicated that DAP decreased solution Cd, Pb, and Zn by forming metal-phosphate precipitates with low solubility products. These results suggest that DAP may have potential for protecting water resources from heavy metal contamination near smelting and mining sites.  相似文献   

17.
Four soil profiles located near a copper smelter in Poland were investigated for the distribution and chemical fractions of Cu, Pb, and Zn and their mobility in relation to soil properties. Contamination with heavy metals was primarily restricted to surface horizons and the extent of contamination was 7- to 115-fold for Cu, 30-fold for Pb, and 6-fold for Zn as compared with subsurface horizons. In the less-contaminated fine-textured soil, the metals were distributed in the order: residual > Fe-Mn oxides occluded > organically complexed > exchangeable and specifically adsorbed, while the order for sandy soils was: residual > organically complexed > Fe-Mn oxides occluded > exchangeable and specifically adsorbed. The contaminated surface horizons of these profiles showed no consistent pattern of metal distribution. However, the common features of highly contaminated soils were very low percentage of residual fraction and the dominance of the NH4OAc extractable fraction. The sum of mobile metal fractions was generally < 10% in subsurface horizons, while in the contaminated surface horizons these fractions made up 50% of the total metal contents. Soil properties contributed more to the relative distribution of the metal fractions in the studied profiles than did the distance and direction to the source of pollution. The amounts of metal extracted by 0.01 M CaCl2 accounted for only a small part of the same metals extracted by NH4OAc. The mobility indexes of metals correlated positively and significantly with the total content of metals and negatively with the clay content.  相似文献   

18.
This study was conducted to determine the extent of Pb absorption into young rats (Rattus norvegicus var. Sprague-Dawley) fed untreated Pb-contaminated soil or Pb-contaminated soil treated with two different sources of P and P + Mn oxide. Data were compared from an in vitro, physiologically based extraction test (PBET) with the animal data to support the validity of the in vitro test to assess bioavailable Pb from a treated Pb-contaminated soil. Soil with a total Pb concentration of 2290 mg kg(-1) was used. Rats were fed 19 different test diets for 21 consecutive days. The test diets represented 95 g AIN93G rat meal kg(-1) diet with varying proportions of silica sand or soil to provide low, medium, or high doses of Pb from either Pb acetate, treated, or untreated soil. Blood, liver, kidney, and bone Pb concentrations were examined. For all four tissues, Pb concentrations for the Pb acetate groups were significantly higher than concentrations for all the soil groups. In general, either triple superphosphate (TSP) or phosphate rock (PR) treatments resulted in significant reductions in tissue Pb concentrations compared with untreated soil. Blood and kidney Pb concentrations for the PR + Mn oxide group were significantly lower than those of the PR group at the low and high doses. Relative bioavailability of Pb, as measured in all tissues, was significantly reduced when comparing untreated with amended soil. Correlation between the in vitro and in vivo tests, based on bone and liver tissue, showed that the in vitro test is successful at predicting Pb bioavailability.  相似文献   

19.
A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed during column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.  相似文献   

20.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa) manure has been implicated in eutrophication. Dietary modification and manure amendments have been identified as best management practices to reduce P runoff from manure. This study was conducted to compare the effects of dietary modification and aluminum chloride (AlCl3) manure amendments on reducing P in swine manure and runoff. Twenty-four pens of nursery swine were fed either a normal diet or a phytase-amended diet. Each pen was connected to a separate manure pit, which was treated with AlCl3 to give final concentrations in the liquid manure of 0 (control), 0.25, 0.50, or 0.75% (v/v). Manure was collected and applied to plots cropped with tall fescue (Festuca arundinacea Schreb.), and simulated rainfall was applied at 50 mm h(-1), sufficient to generate a minimum of 30 min of continuous runoff. Samples of manure and runoff were analyzed for P and Al concentrations. Phytase reduced manure soluble reactive phosphorus (SRP) by 17%, while AlCl3 reduced manure SRP by as much as 73% compared with normal manure. Phosphorus runoff was reduced from 5.7 to 2.6 mg P L(-1) (a 53% reduction) using AlCl3. The mean SRP concentration in runoff from phytase diets without AlCl3 was 7.1 mg P L(-1) during the first rainfall simulation. When phytase and AlCl3 were used together, both manure SRP and P runoff were reduced more than if either treatment were used without the benefit of the other. Use of AlCl3 did not increase soluble Al in manure or Al lost in runoff. Results from this study indicate that producers should use dietary manipulation with phytase and AlCl3 manure amendments to reduce potential P losses from fields fertilized with swine manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号