首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Graft copolymerization of cellulosic biopolymers with synthetic polymers is of enormous interest because of its application in biofiltration, biosorption, biomedical, biocomposites and various other eco-friendly materials. Synthesis of graft copolymers of methyl acrylate onto mercerized Grewia optiva biofibers using ferrous ammonium sulfate–potassium per sulfate as redox initiator in air was carried out. Different reaction parameters such as amount of solvent, monomer concentration, initiator molar ratio, reaction time and reaction temperature were optimized to get the maximum percentage of grafting. The graft copolymers thus formed were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis and differential thermogravimetric techniques. A plausible mechanism for explanation of the graft copolymerization reactions pattern shown is offered. The effect of grafting percentage on the physico–chemical properties of raw as well as grafted Grewia optiva biofibers has also been investigated. The graft copolymers have been found to be more moisture resistant and also showed better chemical and thermal resistance. Green polymer composites were also successfully prepared through compression molding technique by using grafted Grewia optiva biofibers as reinforcement.  相似文献   

3.
Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.  相似文献   

4.
Natural cellulosic fibers are one of the smartest materials for use as reinforcement in polymers possessing a number of applications. Keeping in mind the immense advantages of the natural fibers, in present work synthesis of natural cellulosic fibers reinforced polymer composites through compression molding technique have been reported. Scanning Electron microscopy (SEM), Thermo gravimetric/Differential thermal/Derivative Thermogravimetry (TGA/DTA/DTG), absorption in different solvents, moisture absorbance, water uptake and chemical resistance measurements were used as characterization techniques for evaluating the different behaviour of cellulosic natural fibers reinforced polymer composites. Effect of fiber loading on mechanical properties like tensile strength, flexural strength, compressive strength and wear resistances has also been determined. Reinforcing of the polymer matrix with natural fibers was done in the form of short fiber. Present work indicates that green composites can be successfully fabricated with useful mechanical properties. These composites may be used in secondary structural applications in automotive, housing etc.  相似文献   

5.

Graft copolymerization is a distinctive approach to modify the inherently cheap natural fibers (NFs) using different initiators to incorporate synthetic polymer side chains allowing development of novel types of hybrid materials. This method has been widely applied to develop a variety of NFs based adsorbents for decontamination of toxic pollutants from the aqueous environment. However, the development of high-performance adsorbents from NFs is steady challenged by the need to preserve the sustainability during graft modifications and applications. This article critically reviews the progress on modifications of NFs by graft copolymerization of polar monomers on NFs using various initiating methods and their applications in wastewater treatment. Particularly, the applications of the grafted NFs in removal of heavy metal ions, synthetic dyes, oil spills and extraction of precious metals from wastewater are elaborated. The critical challenges to the viability and sustainability of NFs-based adsorbents with respect to functionalization by graft copolymerization and environmental impacts are discussed and the future research directions are also outlined.

  相似文献   

6.
This work is aimed to study the suitability of the wooden backbone of Opuntia ficus indica cladodes as reinforcement for the production of bio-composites. The wooden backbone can be extracted from O. ficus indica cladodes, which constitute a very relevant agricultural scrap, and is characterized by a thick walled cellular structure. In view of its potential in poly-lactic acid (PLA) matrix bio-composite production, two different possible applications were examined. In the first alternative, the wooden backbone was used in replacement of flax fibers for the production of fully consolidated bio-composites. Results obtained have shown that, though being characterized by lower properties compared to those of flax fiber composites, the opuntia actually works as an efficient reinforcement for PLA/wood flour matrix, increasing the flexural strength and elongation at break. In the second alternative, the cellular structure was used for the production of a sandwich bio-composite with a PLA/wood flour skin. In this case, the very high interlaminar adhesion strength between the skin and the core was considered as an indication of the potentiality of this material for the production of high strength sandwich structures. As a confirmation of this, no interlaminar debonding was observed during short beam tests.  相似文献   

7.
Growing interest in green products has provided fresh impetus to the research in the field of renewable materials. Plant fibers are not only renewable but also light in weight and low in cost. Polymer composites manufactured using them find applications in diverse fields such as automobiles, housing, and furniture. However, their hydrophilic nature and inadequate adhesion with matrix limits their use in high performance applications. In this study, a novel method for improving adhesion characteristics of natural fibers has been developed. This method is carried out by treating hemp fibers with a fungus: Ophiostoma ulmi, obtained from elm tree infected with Dutch elm disease. Treated fibers showed improved acid–base characteristics and resistance to moisture. Improved acid–base interactions between fiber and resin are expected to improve the interfacial adhesion, whereas improved moisture resistance would benefit the durability of the composites. Finally, composites were prepared using untreated/treated fibers and unsaturated polyester resin. Composites with treated fibers showed slightly better mechanical properties, which is most probably due to improved interfacial adhesion.  相似文献   

8.
Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.  相似文献   

9.
Considering the current issues of carbon control and the desire to become less dependent on imported oil, the utilization of renewable hydrocarbons for the reduction of CO2 emission and production of liquid synthetic fuels/chemicals has been proposed by researchers worldwide. Efforts to make chemicals/fuels from renewable resources have escalated over the past few years. Biomass-based renewable hydrocarbons are considered to be one of the sources with the highest potential to contribute to the energy needs of modern society for both developed and developing economies worldwide. Fast pyrolysis is becoming an important thermal route to convert biomass to liquid fuels; however, the raw bio-oils obtained have a number of negative properties such as high acidity, high water content, and variable viscosity over time. To overcome this problem and produce bio-oil of good quality, process of ‘hyropyrolysis’ has been developed. The scope for using pyrolysis under hydrogen pressure and also by process of hydropyrolysis followed by in situ hydroconversion of vapors to give oils with much lower oxygen contents has been reviewed.  相似文献   

10.
Poly(lactide)-graft-glycidyl methacrylate (PLA-g-GMA) copolymer was prepared by grafting GMA onto PLA in a batch mixer using benzoyl peroxide as an initiator. The graft content was determined with the 1H-NMR spectroscopy by calculating the relative area of the characteristic peaks of PLA and GMA. The result shows that the graft content increases from 1.8 to 11.0 wt% as the GMA concentration in the feed varies from 5 to 20 wt%. The PLA/starch blends were prepared by the PLA-g-GMA copolymer as a compatibilizer, and the structure and properties of PLA/starch blends with or without the PLA-g-GMA copolymer were characterized by SEM, DSC, tensile test and medium resistance test. The result shows that the PLA/starch blends without the PLA-g-GMA copolymer show a poor interfacial adhesion and the starch granules are clearly observed, nevertheless the starch granules are better dispersed and covered by PLA when the PLA-g-GMA copolymer as a compatibilizer. The mechanical properties of the PLA/starch blends with the PLA-g-GMA copolymer are obviously improved, such as tensile strength at break increasing from 18.6 ± 3.8 MPa to 29.3 ± 5.8 MPa, tensile modulus from 510 ± 62 MPa to 901 ± 62 MPa and elongation at break from 1.8 ± 0.4 % to 3.4 ± 0.6 %, respectively, for without the PLA-g-GMA copolymer. In addition, the medium resistance of PLA/starch blends with the PLA-g-GMA copolymer was much better than PLA/starch blends.  相似文献   

11.
The conjugated soybean oil was synthesized through the isomerization reaction of soybean oil to transformed the structure of linoleic acid into conjugated linoleic acid structure, and Rhodium complexes (RhCl(Pph3)3) was used as catalyst. The efficiency on the conjugation of catalyst RhCl (Pph3)3, tin dichloride dehydrate (SnCl2·2H2O) and triphenylphosphine (Pph3) were evaluated. The results showed when RhCl(Pph3)3, SnCl2·2H2O and Pph3 are 9.25, 9.0 and 13.1 mg in 100 g soybean oil respectively, the highest conversion of conjugation achieved 96%. The free radical copolymerization of conjugated soybean oil with acrylonitrile (AN) and dicyclopentadiene (DCP) was studied. AIBN was used as the initiator. FT-IR and 1H-NMR results indicates that the conjugated soybean oil with AN and DCP did occur free radical copolymerization with the initiator AIBN. The product is light yellow powder. The thermal properties of the soy-based copolymer were investigated by TG and DSC. The initial degradation temperature of polymers is higher then 250 °C.  相似文献   

12.
In the present study, Phormium Tenax fiber reinforced PLA composites were processed by injection molding and twin screw compounding with a fiber content ranging from 10 to 30 wt%. Three surface treatment methods have been used to improve the Phormium Tenax fiber-matrix interfacial bonding that are as follows: (1) aqueous alkaline solution, (2) silane coupling agent, and (3) a combination of alkaline and silane treatment. The mechanical, thermal and morphological properties of the resulting composites were investigated. The results have shown that the moduli of surface treated fiber reinforced composites are lower than the ones obtained for untreated composites (as a consequence of the decrease in fiber modulus caused by the chemical treatments) and no significant increase in strength was observed for any of the composites compared to neat PLA. SEM micrographs of composite fractured surfaces confirmed an improvement in the interfacial strength, which was insufficient nonetheless to significantly enhance the mechanical behavior of the resulting composites. Results from thermogravimetric analysis and differential scanning calorimetry suggest that surface treatment of Phormium affects the ability of PLA to cold crystallize, and the thermal stability of the composites at the different fiber contents was reduced with introduction of alkali and silane treated Phormium fibers.  相似文献   

13.
Clay borrow materials intended for use in a clay liner system were found to be contaminated by low concentrations of volatile organic chemicals (VOCs). The suspected source of contaminants was a nearby Superfund site where similar compounds were found in soil and groundwater. Based on these observations, questions were raised regarding the potential effects of VOCs on the performance of the clay materials as a landfill liner.Laboratory experiments were conducted to evaluate the effects of three levels of soil precontamination and two types of permeants. Atterberg tests showed that the precontaminations (acetone and m-xylene) and the simulated leachate (methylene chloride, trichloroethylene, and toluene), at the concentrations used, did not impact clay-pore fluid interaction. Sedimentation tests showed that the impact of methylene chloride, trichloroethylene, and toluene on sediment volume and rate of settlement was not detectable up to the maximum concentration level of 100 ppm for each chemical.From the permeation tests, acetone in the precontaminated samples was generally flushed out within three pore volumes but m-xylene was not detected (above the detection limit of 0.01 mg 1−1) in the permeant effluent. The stabilized permeabilities of the specimens ranged from 0.2 × 10−7 to 3.0 × 10−7 cms−1. It was found that precontamination of the clay at the levels studied did not affect organic chemical leachate transport/adsorption discernibly when compared with clean clay, and no measurable retardation or adsorption of VOCs in clay liners occurred in either clean clay or precontaminated clay.  相似文献   

14.
Hydrogels were synthesized by free radical graft copolymerization of itaconic acid (IA) onto corn starch (S-g-IA). For this purpose, potassium permanganate (KMnO4)-sodium bisulfite (NaHSO3) was used as redox initiation system. The formation of grafted starches was confirmed by Fourier transform infrared spectroscopy, wide angle X-ray scattering, thermogravimetric analysis and scanning electron microscopy. The effect of monomer concentration, neutralization, addition of crosslinking agent, N,N-bismetilenacrilamide (MBAm), and initiator concentration on grafting efficiency and adsorption capacity of the starch hydrogels was investigated. It was demonstrated that the introduction of carboxyl and carbonyl groups promoted starch hydration and swelling. Grafting degree increased with the decrease of monomer concentration, increase of initiator concentration, grade of neutralization and the addition of MBAm without neutralization. Remarkably the resulting materials exhibited water absorption capacities between 258 and 1878% and the ability to adsorb metal ions. It was experimentally confirmed the metal uptake, obtaining the higher adsorption capacity (q e  = 35 mg/g) for the product prepared with the pre-oxidation and lower initiator concentration. The removal capacity order was Pb2+>Ni2+>Zn2+>Cd2+. Moreover, the experimental kinetic and the equilibrium adsorption data for Ni2+ and Pb2+ were best fitted to the pseudo-second order and Freundlich isotherm models, respectively. This work describes for the first time the preparation of metal removal hydrogels based on starch and itaconic acid using the pair redox system KMnO4/NaHSO3, which avoids the starch hydrolysis and allows itaconic acid grafting incorporation without the requirement of more reactive comonomers.  相似文献   

15.
The present work was to evaluate the stability potential of (E)-4-(3,4-dimethoxyphenyl)but-3-en-l-ol (Compound D) in polyherbal transdermal patches. The polyherbal formulation composed of the rhizomes of Zingiber cassumunar and Curcuma longa, leaves and stems of Cymbopogon citratus, rind and leaves of Citrus hystrix fruit, and leaves of Acacia rugata and Tamarindus indica. Polyvinyl alcohol and hydroxypropyl methylcellulose were used as a matrix film, and glycerine was used as a plasticizer. Stability testing was established for 6 months under accelerated conditions as according to International Conference on Harmonisation guidelines. Mechanical properties, moisture uptake, swelling ratio, and in vitro studies were evaluated. New Zealand white rabbits were used as the animal model. Results obtained after 6 months showed that the polyherbal transdermal patches were stable, with a good mechanical properties and hydrophilicity. In vitro study kinetics for active Compound D fitted to the Higuchi model for both release and skin permeation. The transdermal patch containing polyherbal formulation was safe to apply on the skin without irritation. Thus, transdermal patches containing this polyherbal formulation had good stability potential, with no irritation on application.  相似文献   

16.
This paper reports the structure and properties of silk fibers produced by Actias lunas in comparison to Bombyx mori and the common wild silks. Considerable efforts are being made to find new sources for natural silk and also to develop regenerated protein fibers to supplement the limited amounts of B. mori and wild silks available in the market. In addition, it has been found that non-traditional silks have unique properties and utilizing uncommon wild silks can provide income and employment to indigenous people where the wild silks are found. Actias lunas belongs to the Saturniidae family of silk producing insects. However, the structure and properties of silk produced by A. lunas have not been studied. This research showed that the silk fibers produced by the luna moth had morphological and physical structure similar to that of the common wild silks but tensile properties similar to that of B. mori silk. A. lunas silk fibers are composed of higher amounts of hydrophobic amino acids and had much less glycine than B. mori and common wild silks. With a fineness of 2 denier, breaking tenacity of 4.3?g/den and breaking elongation of 10.9?%, the tensile properties of A. lunas silk fibers were similar to that of B. mori and much better than that of the common wild silks that are coarser and have lower breaking tenacity. A. lunas fibers show good potential to be useful for applications currently using B. mori silk.  相似文献   

17.
In this study, biodegradation of low-density polyethylene (LDPE) by isolated landfill-source fungi was evaluated in a controlled solid waste medium. The fungi, including Aspergillus fumigatus, Aspergillus terreus and Fusarium solani, were isolated from samples taken from an aerobic aged municipal landfill in Tehran. These fungi could degrade LDPE via the formation of a biofilm in a submerged medium. In the sterilized solid waste medium, LPDE films were buried for 100 days in a 1-L flask containing 400 g sterile solid waste raw materials at 28 °C. Each fungus was added to a separate flask. The moisture content and pH of the media were maintained at the optimal levels for each fungus. Photo-oxidation (25 days under UV-irradiation) was used as a pretreatment of the LDPE samples. The progress of the process was monitored by measurement of total organic carbon (TOC), pH, temperature and moisture. The results obtained from monitoring the process using isolated fungi under sterile conditions indicate that these fungi are able to grow in solid waste medium. The results of FT-IR and SEM analyses show that A. terreus and A. fumigatus, despite the availability of other organic carbon of materials, could utilize LDPE as carbon source. While there has been much research in the field of LDPE biodegradation under solid conditions, this is the first report of degradation of LDPE by A. fumigatus.  相似文献   

18.
The potential of lignocellulosic fibers obtained by dry grinding of pinhão coat as fillers in starch filmogenic solutions for packaging applications was evaluated in this work. To improve the incorporation of this waste into the starch solutions different physical and chemical treatments were conducted. Thereafter, morphology, chemical structure, crystallinity and water absorption of the pinhão coat powders were determined. The composites were also characterized regarding their morphology, chemical structure, crystallinity, mechanical properties, water vapor permeability and hydrophilicity. Poor fiber/matrix adhesion and high water absorption of the fibers were evidenced. Consequently, water vapor permeability of composites was increased by incorporating the fibers. Moreover, mechanical properties were improved and the morphological results were used to support the water absorption differences among the powders. Regarding the food packaging applications, starch/pinhão coat composites appeared as promising materials to reach the requirements of respiring food products.  相似文献   

19.
以含AlCl3的酰基化反应工业废水为原料,采用聚芳醚砜酮中空纤维超滤膜为反应介质制备聚合氯化铝(PAC)。通过正交实验考察了碱浓度、碱化度、碱类型和加碱速率对PAC絮凝性能的影响。经优化后的试制参数用于PAC的放大实验,并将试制产品应用于染料废水的处理,考察了PAC对一定浓度的染料废水(达旦黄、活性红、甲基橙和食品黄)的脱色效果。实验结果表明,在NaOH溶液浓度0.5mol/L、渗透压0.2MPa、碱化度2.0时制备的PAC对4种染料的脱色率均大于96%。  相似文献   

20.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号