首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop residues as soil amendments and feedstock for bioethanol production   总被引:3,自引:0,他引:3  
Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).  相似文献   

2.
This paper presents and discusses the method and results of account for material flows in Sweden for the year 2004. The results show that it is possible to compile material flow data from existing sources in the Swedish statistical system. By using the European classification system of goods, the Combined Nomenclature, as the basic unit of the data collection, both data collection and aggregation into material flow categories were made possible. Although these data exist in the statistical system, they are not easily available for the scientific community. This is due to several reasons, such as the aggregation of data in the system of statistics not corresponding to the material flow account structure and the fact that data on import and export of materials are organised differently than data for domestic extraction. Almost 50% of the material flows in Sweden are flows of minerals, mainly construction minerals followed by iron ores. Most of the extracted iron ores are exported. In comparison with other European countries this generates a unique situation with Sweden as the only net exporter of iron ores. The flow of biomass in terms of wood is also considerable (26% of the Swedish material flows in 2004). The domestic material consumption (inflow) per capita in 2004 was 8 tonnes minerals, 6 tonnes biomass and almost 3 tonnes of fossil fuels. Of the material flows of fossil fuels petroleum and natural gas dominates with 90%.  相似文献   

3.
Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the commercial production of biodiesel from agricultural biomass.  相似文献   

4.
A field study using monoliths (lysimeters) of a sandy clay loam soil was conducted to assess the fate of mutagenic chemicals after refinery and wood preserving bottom sediment sludges were land treated. The Ames Salmonella/microsome assay1 was used to determine the direct (without metabolic activation, −S9) and indirect (with metabolic activation, + S9) mutagenicity of the wastes, unamended soil, waste amended soils, and leachate. Extracts having a mutagenic ratio (MR) (MR= No. colonies from sample extract/No. colonies from DMSO solvent control) of ⩾ 2 were considered positively mutagenic. Extracts of the wood preserving waste sludge without activation were non-mutagenic (MR < 2) but extracts with activation ( + S9) produced very strong indirect mutagenicity (MR = 7.9). After soil incorporation, the waste amended soil produced very strong direct (MR = 8.9) and indirect (MR = 11.9) mutagenicity by day 180 and remained mutagenic (MR = 5.7, −S9; MR = 3.95, + S9) through day 350. The amount of residue in leachate from the wood preserving waste amended lysimeters was significantly greater (P <0.05) than the unamended soil during the first 90 days after waste application, but was not different after 90 days. The leachate residue from wood preserving waste amended lysimeters in the 90–180-day period produced mutagenic responses both with (MR = 2.24 and 2.51) and without (MR = 2.29) activation. Polynuclear aromatic hydrocarbons were the main constituents identified in the leachate residues that produced a mutagenic response. Soil treatment of the refinery sludge reduced its weak indirect mutagenicity before soil incorporation (MR = 2) to non-mutagenic (MR = 1.4) immediately following soil treatment. The MR of the waste amended soil increased to 1.7 by day 180 but by day 350 decreased to a level equal to that observed at day 0 (MR = 1.4). Leachate from the refinery amended lysimeters had significantly greater (P < 0.05) amounts of organic residue than unamended lysimeters 180 to 350 days after waste application. The leachate from one refinery waste amended lysimeter (90–180 days after waste application) produced a mutagenic response (MR = 3.16). The refinery sludge was detoxified shortly after soil treatment, but the wood preserving sludge required > 350 days to detoxify in the soil environment. The possibility exists that mobile mutagenic chemicals may leach into underlying groundwater from the treatment zone of soils amended with refinery and wood preserving sludges.  相似文献   

5.
The utilization of bioethanol is being focused on as a fuel alternative to oil and or natural gas. Bioethanol production from cellulosic plant residues is one of the solutions proposed for the problems caused by usage of food crops that are also vital for human consumption, such as sugar cane and corn, as a source of bioethanol. However, to utilize these new sources for bioethanol production, conditions for saccharification in each different material have not been optimized. In this study, we reported some optimum conditions for the saccharification of Korean lawn grass (KL) and bent grass (BG) using acremonium cellulase and endoglucanase as saccharifying enzymes for ethanol fermentation. With respect to saccharification of KL and BG, 0.19 and 0.18 g of d-glucose per g-substrate at maximum were produced, respectively. Comminution with a ball mill was found to be effective in the saccharification of KL, while ball-milled BG showed no significant improvement in saccharification. Being incorporated with 99 % of d-glucose consumption, saccharified KL was incubated for 3 days with Saccharomyces cerevisiae and Zymomonas mobilis, respectively, and each mixture fermented to ethanol yielding approximately 100 % of theoretical values from d-glucose consumption, respectively.  相似文献   

6.
This work evaluates filtration followed by expression characteristics of oil-containing sludge from a dissolved-air-flotation unit of a petroleum refinery plant at a mechanical pressure of 2000 psi. Although slightly but finitely enhancing the deliquoring rate, cationic polyelectrolyte conditioning cannot significantly reduce the residual liquor content after expression. In contrast, freeze/thaw treatment can significantly improve the sludge's deliquorability and markedly reduce the bound liquor content. Closely examining the freezing time and the required cost revealed that freeze/thaw technique is a feasible means of treating oily sludge from a petroleum refinery plant.  相似文献   

7.
The steady increase in production of corn based ethanol fuel has dramatically increased the supply of its major co-product known as distiller’s dried grain with solubles (DDGS). Large amount of DDGS and corn flour are used as an animal feed. The elusieve process can separate DDGS or corn flour into two fractions: DDGS fraction with enhanced protein and oil content or corn flour fraction with high starch content, and hull fiber. This study investigated the feasibility of using fiber from DDGS and corn grain as alternative fillers to wood fiber in high density polyethylene (HDPE) composites made with two different sources of polymers. Two fiber loading rates of 30 and 50% were evaluated for fiber from DDGS, corn, and oak wood (control) to assess changes in various physical and mechanical properties of the composite materials. Two HDPE polymers, a bio-based HDPE made from sugarcane (Braskem), and a petroleum based HDPE (Marlex) were also compared as substrates. The biobased polymer composites with DDGS and corn fibers showed significantly lower water absorption than the Marlex composite samples. The Braskem composite with 30% DDGS fiber loading showed the highest impact resistance (80 J/m) among all the samples. The flexural properties showed no significant difference between the two HDPE composites.  相似文献   

8.
This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.  相似文献   

9.
Currently there is a growing interest in developing novel bioproducts and biomaterials derived from renewable sources that can reduce the dependence on fossil fuel feedstock. In this study a protein concentrate from microalgae Botryococcus braunii residual biomass (MPC) from a biorefinery process was used as a biopolymer to develop ultrafine fibers by electrospinning. Experiments were designed to study the effect of different formulations of MPC, poly(ethylene oxide) and pH on morphology and diameter of fibers. The results indicated MPC fibers from acidic solutions prepared at pH 1 had smoother and smaller diameter than those fibers from alkaline solutions (pH 12). Moreover, under the conditions studied, it was conclude that pH and the concentration of MPC were the most significant factors in determining the diameter and morphology of the fibers obtained. Fourier transform infrared analysis showed there is a slight frequency shift for the secondary structure of MPC as induced by change in pH of the polymer solutions. Likely this change in the protein structure improved the physical chain entanglement in the polymer blend. The results of this work revealed a potential to develop fibers from MPC from residual biomass by a promising technique that may find many end-use applications.  相似文献   

10.
Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption.  相似文献   

11.
Between 1996 and 2002, the Swedish import of so-called yellow waste for energy recovery increased. The import mainly consisted of separated wood waste and mixes of used wood and paper and/or plastics that was combusted in district heat production plants (DHPPs). Some mixed waste was imported to waste incineration plants for energy recovery (10% of the import of yellow waste for energy recovery in 2002). The import came primarily from Germany, the Netherlands, Norway, Denmark and Finland. We identified six underlying driving forces for this recent increase of imported waste which are outlined and their interactive issues discussed. --The energy system infrastructure, which enables high energy recovery in Sweden. --The energy taxation, where high Swedish taxes on fossil fuels make relatively expensive solid biofuels the main alternative for base load production of district heat. --The quality of the waste-derived fuels, which has been higher in the exporting countries than in Sweden. --The bans on landfilling within Europe and the shortage of waste treatment capacity. --Taxes on waste management in Europe. --Gate fee differences between exporting countries and Sweden. In the future, the overall strength of these driving forces will probably be weakened. A Swedish tax on waste incineration is being investigated. In other European countries, the ambition to reach the Kyoto targets and increase the renewable electricity production could improve the competitiveness of waste-derived fuels in comparison with fossil fuels. Swedish DHPPs using waste-derived fuels will experience higher costs after the Waste Incineration Directive is fully implemented. The uncertainty about European waste generation and treatment capacity, however, might have a large influence on the future gate fees and thus also on the yellow waste import into Sweden.  相似文献   

12.
A life cycle assessment was conducted using IMPACT2002+ to estimate the environmental impact of producing printing and writing paper, which is entirely made with wastepaper. To confirm and add credibility to the study, uncertainty analysis was conducted using Taylor series expansion. Printing and writing paper produced from wood pulp was assessed for comparison. Compared with the wood pulp contained scenario, printing and writing paper made from wastepaper represented environmental benefit on non-carcinogens, respiratory inorganics, global warming, and non-renewable energy categories. In both scenarios, the technologies significantly contribute to the potential impacts of non-carcinogens, respiratory inorganics, terrestrial ecotoxicity, global warming, and non-renewable energy. The influence of the technologies on the way other categories affect the environment was negligible. Improved efficiency in electricity consumption, decreased transport distance from raw material buyers to suppliers, and change in the end-life treatment of solid waste from landfill to incineration are the key factors in reducing the overall environmental impact.  相似文献   

13.
Polyhydroxybutyrate is a type of biopolymer that can be produced from hydrolyzed polysaccharide materials and could eventually replace polypropylene and polyethylene, being biodegradable, biocompatible and produced from renewable carbon sources. However, polyhydroxybutyrate is not still competitive compared to petrochemical polymers due to their high production costs. The improvement of the production processes requires a search for new alternative raw materials, design of the pretreatment technique and improvement in the fermentation and separation steps. In addition, if the polyhydroxybutyrate production is coupled into a multiproduct biorefinery it could increase the economic and environmental availability of the process through energy and mass integration strategies. In this work alternatives of energy and mass integrations for the production of polyhydroxybutyrate into a biorefinery from residual banana (an agro-industrial waste) were analyzed. The results show that the energetic integration can reduce up to 30.6% the global energy requirements of the process and the mass integration allows a 35% in water savings. Thus, this work demonstrates that energy and mass integration in a biorefinery is a very important way for the optimal use of energy and water resources hence decreasing the production cost and the negative environmental impacts.  相似文献   

14.
15.
The study focuses on analysing the evolution of environmental impacts caused by a medium–large Italian WtE plant before and after revamping and maintenance operations, with the aim of providing an evaluation of how much these structural upgrade measures may affect the total environmental performance.LCA methodology was applied for the modelling and comparison of six WtE scenarios, each describing the main structural upgrades carried out in the plant over the years 1996–2011. The comparison was conducted by adopting 1 ton of MSW as the functional unit, and the net contribution from energy recovery to power generation was distinguished by defining consistent national grid electricity mixes for every year considered. The Ecoindicator99 2.09 impact assessment method was used to evaluate the contribution to midpoint and endpoint categories (e.g. carcinogens, respiratory inorganics and organics, climate change, damage to human health). Lastly, the “Pedigree quality matrix” was applied to verify the reliability and robustness of the model created.As expected, the results showed better environmental scores after both the implementation of new procedures and the integration of operations. However, while a net reduction of air emissions seems to be achievable through dedicated flue gas treatment technologies, outcomes underscored potentials for improving the management of bottom ash through the adoption of alternative options aimed to use that solid residue mainly as filler, and to decrease risks from its current disposal in landfill. If the same effort that is put into flue gas treatment were devoted to energy recovery, the targets for the WtE plant could be easily met, achieving a higher sustainability. This aspect is even more complex: national policies for implementing greener and renewable energy sources would result in a lower impact of the national energy mix and, hence, in a lower net avoided burden from energy recovery.The study confirmed the expected improvements, indicating quantitatively the lower environmental impact resulting from structural upgrade operations in a WtE plant. Furthermore, the work highlights the importance of considering the evolution of the national energy mix in LCA studies, especially during the present years of transition from fossil fuels to renewable sources.  相似文献   

16.
The waste hierarchy is being widely discussed these days, not only by cost-benefit analysts, but a growing number of life cycle assessments (LCA) have also begun to question it. In this article, we investigate the handling of waste paper in Denmark and compare the present situation with scenarios of more waste being recycled, incinerated or consigned to landfill. The investigations are made in accordance with ISO 14040-43 and based on the newly launched methodology of consequential LCA and following the recent guidelines of the European Centre on Waste and Material Flows. The LCA concerns the Danish consumption of paper in 1999, totalling 1.2 million tons. The results of the investigation indicate that the waste hierarchy is reliable; from an environmental point of view recycling of paper is better than incineration and landfilling. For incineration, the reason for the advantage of landfilling mainly comes from the substitution of fossil fuels, when incinerators provide heat and electricity. For recycling, the advantage is related to the saved wood resources, which can be used for generating energy from wood, i.e., from renewable fuel which does not contribute to global warming.  相似文献   

17.
Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.  相似文献   

18.
The inadequate and indiscriminate disposal of sugarcane vinasse in soils and water bodies has received much attention since decades ago, due to environmental problems associated to this practice. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from sugar crops (beet and sugarcane), starch crops (corn, wheat, rice, and cassava), or cellulosic material (harvesting crop residues, sugarcane bagasse, and wood). Because of the large quantities of vinasse produced, alternative treatments and uses have been developed, such as recycling of vinasse in fermentation, fertirrigation, concentration by evaporation, and yeast and energy production. This review was aimed at examining the available data on the subject as a contribution to update the information on sugarcane vinasse, from its characteristics and chemical composition to alternatives uses in Brazil: fertirrigation, concentration by evaporation, energy production; the effects on soil physical, chemical and biological properties; its influence on seed germination, its use as biostimulant and environmental contaminant. The low pH, electric conductivity, and chemical elements present in sugarcane vinasse may cause changes in the chemical and physical–chemical properties of soils, rivers, and lakes with frequent discharges over a long period of time, and also have adverse effects on agricultural soils and biota in general. Thus, new studies and green methods need to be developed aiming at sugarcane vinasse recycling and disposal.  相似文献   

19.
The use of petroleum-derived products should be avoided regarding the principles of green and sustainable chemistry. The work reported herein, is aimed at the liquefaction of pine shavings for the production of an environmentally-friendly polyol suitable to be used in the formulations of sprayable polyurethane foams. The biopolyols were obtained in high yield and were used to replace those derived from fossil sources, to produce more “greener” polyurethane foams and therefore, less dependent on petroleum sources, since the polyol component was substituted by products resulting from biomass liquefaction. The partial and fully exchange of the polyols was accomplished, and the results compared with a reference foam. The foams were afterward, chemical, physical, morphological, and mechanically characterized. The complete replacement of polyether polyol and polyol polyester has presented some similar characteristics as that used as a reference, validating that the path chosen for the development of more sustainable materials is on the right track for the contribution to a cleaner world.  相似文献   

20.
Biomass cogeneration is widely used for district heating applications in central and northern Europe. Biomass trigeneration on the other hand, constitutes an innovative renewable energy application. In this work, an approved United Nations Framework Convention on Climate Change baseline methodology has been extended to allow the examination of biomass trigeneration applications. The methodology is applied to a case study in Greece to investigate various environmental and financial aspects of this type of applications. The results suggest that trigeneration may lead to significant emissions reduction compared to using fossil fuels or even biomass cogeneration and electricity generation. The emissions reduction achieved may be materialized into a considerable revenue stream for the project, if traded through a trading mechanism such as the European Union Greenhouse Gas Emission Trading Scheme. A sensitivity analysis has been performed to compensate for the high volatility of the emission allowances’ value and the immaturity of the EU Trading Scheme, which prevent a reliable estimation of the related revenue. The work concludes that emission allowances trading may develop into one of the major revenue streams of biomass trigeneration projects, significantly increasing their financial yield and attractiveness. The impact on the yield is significant even for low future values of emission allowances and could become the main income revenue source of such projects, if emission allowances increase their value substantially. The application of trigeneration for district energy proves to lead to increased environmental and financial benefits compared to the cogeneration or electricity generation cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号