首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

2.
This study presents a photochemical kinetics model to describe the degradation of water-soluble PVA (Polyvinyl Alcohol) polymer in a UV/H2O2 batch reactor. Under the effect of UV light, the photolysis of hydrogen peroxide into hydroxyl radicals can generate a series of polymer scission reactions. For a better understanding and analysis of the UV/H2O2 process in the cracking of the PVA macromolecules, a chemical reaction mechanism of the degradation process and a relevant photochemical kinetics model are developed to describe the disintegration of the polymer chains. Taking into account the probabilistic fragmentation of the polymer, the statistical moment approach is used to model the molar population balance of live and dead polymer chains. The model predicts the PVA molecular weight reduction, the acidity of the solution, and hydrogen peroxide residual. In addition to previously published data collected in this laboratory, a new set of experiments were conducted using a 500 mg/L PVA aqueous for different hydrogen peroxide/PVA ratios for model validation. Measurements of average molecular weights of the polymer, hydrogen peroxide concentrations and pH of the PVA solution were determinant factors in constructing a reliable photochemical model of the UV/H2O2 process. Experimental data showed a decrease in the PVA molecular weight and a buildup of the solution acidity. The experimental data also served to determine the kinetics rate constants of the PVA photochemical degradation and validate the model whose predictions are in good agreement with data. The model can provide a comprehensive understanding of the impact of the design and operational variables.  相似文献   

3.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

4.
In this research Fenton reagent (Fe2+/H2O2) was investigated as oxidants to degrade poly (vinyl alcohol) (PVA). The role of nano-TiO2 photocatalyst was discussed as an additive in Fenton reagent (Fe2+/H2O2). Pt/TiO2 composites were also synthesized by photo-reaction to be used as additive in Fenton reagent. The rapid degradation of PVA was obtained when Pt/TiO2 composites served as photocatalyst. The different photocatalytic efficiency of Pt/TiO2- Fenton reagent (Fe2+/H2O2) was studied compared with TiO2- Fenton reagent (Fe2+/H2O2) during the degradation of PVA.  相似文献   

5.
In this study, melB tyrosinase was applied for enzymatic removal of linear and branched p-alkylphenols from aqueous solutions. First, systematic studies were carried out to estimate the effects of the process parameters such as the temperature, pH value, and enzyme dose on quinone conversion of p-cresol as a model phenol compound. A variety of p-alkylphenols were removed from aqueous solutions through the tyrosinase-catalyzed quinone conversion and subsequent nonenzymatic adsorption of quinone derivatives on chitosan beads at pH 6.0 and 30 °C under the optimum conditions determined for p-cresol. The % removal values of 98–100 were obtained for p-n-alkylphenols. Branched p-alkylphenols with a weak estrogenic activity containing 4-tert-butylphenol and 4-tert-pentylphenol, which underwent no quinone conversion by commercially available mushroom tyrosinase in the absence of H2O2, were also effectively removed by further increasing either the melB tyrosinase concentration or the amount of added chitosan beads. The present technique is much effective in the fact that a series of reactions rapidly progress under mild conditions and the chitosan beads can be readily separated from the reaction medium after the enzymatic treatment.  相似文献   

6.
Polyvinyl alcohol (PVA), being a dominant contributor of total organic carbon (TOC) in textile wastewater, is not easily degradable by conventional methods of wastewater treatment. This study investigates the degradation of aqueous PVA in a continuous UV/H2O2 photoreactor since the feeding strategy of hydrogen peroxide proves to have considerable effects on the process performance. Response surface methodology involving the Box–Behnken method is adopted for the experimental design to study the effects of operating parameters on the process performance. Experimental analysis shows that the TOC removal varies from 16.11 to 42.70 % along with a reduction of the PVA molecular weights from 56.7 to 95.3 %. The TOC removal is significantly lower than the molecular weight reduction due to the generation of the intermediate products during oxidation. Operating the UV/H2O2 process in a continuous mode facilitates the degradation of highly concentrated polymeric solutions using a relatively small hydrogen peroxide concentration in the feed with a small residence time ranges from 6.13 to 18.4 min.  相似文献   

7.
The electrochemical degradation of chitosan using Ti/Sb–SnO2 electrode was studied in this work. The experimental results showed that as a non-active electrode with high oxygen potential, Ti/Sb–SnO2 electrode had a good efficiency for degrading chitosan. The kinetic behavior of electrochemical degradation of chitosan using Ti/Sb–SnO2 electrode and the function relationship between experimental parameters and degradation rate constant were also investigated. The kinetic analysis revealed that this electrochemical process using Ti/Sb–SnO2 electrode obeyed the zeroth–order reaction kinetics under the experimental conditions examined. The degradation rate constant at Ti/Sb–SnO2 electrode had the linear relationship with 1.13 power of current density, ?1.36 power of initial concentration of chitosan and 0.19 power of concentration of acetic acid, The temperature dependences of the degradation rate constant could be expressed by the Arrhenius equation. The concentration of sodium acetate had a negligible influence on the degradation rate constant.  相似文献   

8.
Laboratory studies on the remediation of mercury contaminated soils   总被引:1,自引:0,他引:1  
Mercury, in contrast to other toxic metals, cycles between the atmosphere, land, and water. During this cycle, it undergoes a series of complex chemical and physical transformations. Because of these transformations, it is found in the environment not only as simple inorganic and organic compounds, but also as complex compounds. As a result, it is difficult to remediate mercury contaminated materials. Laboratory studies were conducted with a mercury contaminated complex waste from an industrial site to evaluate the ability of extractants such as H2O2, H2SO4 and Na2S2O3 to decontaminate the waste. Up to 87 percent of the total mercury present in the waste was extracted. Mercury was recovered as insoluble mercury sulfide by adding Na2S solution to the combined filtrates from the H2O2 + H2SO4 and Na2S2O3 treatment steps. The technique described in this article is capable of recovering mercury in a usable form and can be used as a pretreatment to remediate mercury contaminated waste before laud disposal.  相似文献   

9.
This work investigated the chemical and mineralogical properties of CaO–SiO2–Cr2O3–CaF2–MgO slags. Synthetic slags were prepared and the effect of the slag basicity (mass ratio CaO/SiO2) and MgO contents on the stability of the mineralogical species formed was analyzed. The morphology and composition of the slags were analyzed by X-ray powder diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM–EDS), whilst their chemical stability was evaluated by leaching with an aqueous acetic acid solution. It was found that in slags with CaO/SiO2?=?1, the main Cr-compound was MgCr2O4 spinel, which forms octahedron crystals. Small amounts of CaCr2O4 and CaCrO4 were also observed. It was found that with increasing the slag basicity from 1 to 2 the compounds MgCr2O4 and CaCr2O4 were formed together with the Cr(V)-containing compound complex Ca5(CrO4)3F which forms hexagonal crystals. The results showed that the highest Cr concentration levels in the leaching liquors corresponded to slags with CaO/SiO2?=?2, probably owing to the formation of CaCrO4 and Ca5(CrO4)3F, whilst the lowest chromium concentration levels corresponded to MgO-based slags owing to the stable binding of chromium in spinel with MgO. Additionally, potential–pH diagrams for the Ca–Cr–H2O and Mg–Cr–H2O systems at 25?°C were calculated.  相似文献   

10.
In an attempt to increase the range of analytical techniques able to monitor ultimate degradation stages of degradable, biodegradable, and bioresorbable polymers, capillary zone electrophoresis (CZE) was used to analyze tentatively oligomers formed during thermal condensation of lactic, glycolic, anddl-3-hydroxybutyric acids. The influence of the buffer and of capillary coating are discussed in terms of electroosmotic flow. Typical analyses were first performed using a 0.1M borate buffer (pH 8.9) with anodic injection. In the case of lactic acid, seven peaks were well separated, while only three peaks were observed for glycolic acid. A more complex situation was found fordl-3-hydroxybutyric acid oligomers. The first five peaks were split. The major component of each doublet was attributed to hydroxy-terminated oligomers, whereas the satellite peaks were assigned to oligomers bearing a C=C double bond at the noncarboxylic terminus. CZE of pH-sensitive lactic acid oligomers was also performed in 0.05M phosphate buffer (pH 6.8) with cathodic injection after physical coating of the fused-silica capillary with DEAE-Dextran. The buffer-soluble fraction present in lactic acid oligomers was extracted from a dichloromethane solution. Extracts issued from different batches of lactic acid condensates gave a constant water-solubility pattern whose cutoff was at the level of the decamer. CZE was also used to monitor thein vitro aging of aqueous solutions of these water-soluble oligomers. The lactyllactic acid dimer appeared more stable than higher oligomers, thus showing that ultimate stages of the degradation did not proceed at random. These physicochemical characteristics were used to complement the degradation pathway based on diffusion of oligomers duringin vitro aging of large size lactic acid plates made by compression molding. CZE data showed that lactic acid was the only component which was released in the aqueous medium during degradation.Presented by C.B. at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, NH, USA.  相似文献   

11.
Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O2 was the main reason for H2S production. Maintaining the O2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting.  相似文献   

12.
This paper describes a hydrometallurgical process for recovering neodymium (Nd) and dysprosium (Dy) from a magnetic waste sludge generated from the Nd–Fe–B(–Dy) manufacturing process. Phase analysis by XRD study revealed Nd(OH)3 and Fe2O3 as main mineral phases, and chemical analysis by ICP showed the contents of 35.1 wt% Nd, 29.5 wt% Fe, 1.1 wt% Dy and 0.5 wt% B. A solution of 1 M HNO3 + 0.3 M H2O2 was used to dissolve up to 98 % Nd and 81 % Dy, while keeping Fe dissolution below 15 % within 10 min. Fe dissolved in solution was completely removed as Fe(OH)3 at pH 3 followed by precipitation of Nd and Dy with oxalic acid (H2C2O4) and recovered 91.5 % of Nd and 81.8 % of Dy from solution. The precipitate containing Nd and Dy was calcined at 800 °C to obtain Nd2O3 as final product with 68 % purity, and final recovery of 69.7 % Nd and 51 % of Dy was reported in this process.  相似文献   

13.
A new treatment method is developed to degrade 4-chlorophenol (4-cp) and its oxidation intermediates. The experimental results of this research demonstrate that 4-cp and its oxidation intermediates can be decomposed completely by basic oxygen furnace slag (BOF slag) with hydrogen peroxide (H2O2) in an acid solution. The factors that effect the treatment efficiency were studied including initial concentration of 4-cp, pH of the solution, concentration of H2O2 and amount of BOF slag. The BOF slags are final waste materials in the steel making process. The major components of BOF slag are CaO, SiO2, Fe2O3, FeO, MgO and MnO. As the BOF slag in an acid solution, FeO and Fe2O3 can be dissociated to produce ferrous ion and ferric ion. Ferrous ion reacts with hydrogen peroxide to form “Fenton's reagent” which can produce hydroxyl radicals (OH.). Hydroxyl radical possession of high oxidation ability can oxidize organic chemicals effectively. Results show that 100 mg/l of 4-cp is decomposed completely within 30 min by 438.7 g/l BOF slag with 8.2 mM hydrogen peroxide in pH=2.8±0.2 solution. The COD value of the solution is reduced from 290 to 90 mg/l. The factors studied which affect the 4-cp decomposition efficiency were the hydrogen peroxide concentration, BOF slag concentration, pH of the solution and initial concentration of 4-cp. Because large amounts of Fe2O3 and FeO are present in the BOF slag, the BOF slag not only has a high treatment efficiency, but also can be used repeatedly.  相似文献   

14.
The electrochemical oxidation (EO) of environmentally persistent perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) with a Magnéli phase Ti4O7 electrode was investigated in this study. After 3 hours (hr) of electrolysis, 96.0 percent of PFOA (10 milligrams per liter [mg/L] in 100 milliliters [mL] 100 millimolar [mM] Na2SO4 solution) was removed following pseudo first‐order kinetics (k = 0.0226 per minute [min]) with the degradation half‐life of 30.7 min. Under the same treatment conditions, PFOS (10 mg/L in 100 mL 100 mM Na2SO4 solution) removal reached 98.9 percent with a pseudo first‐order degradation rate constant of 0.0491/min and the half‐life of 14.1 min. Although, the degradation of PFOA was slower than PFOS, when subjected to EO treatment in separate solutions, PFOA appeared to degrade faster than PFOS when both are present in the same solution, indicating possible competition between PFOA and PFOS during Ti4O7 anode‐based EO treatment with PFOA having the competitive advantage. Moreover, the EO treatment was applied to degrade highly concentrated PFOA (100.5 mg/L) and PFOS (68.6 mg/L) in ion‐exchange resin regenerant (still bottom) with high organic carbon content (15,800 mg/L). After 17‐hr electrolysis, the total removal of PFOA and PFOS was 77.2 and 96.5 percent, respectively, and the fluoride concentration increased from 0.84 mg/L to 836 mg/L. Also, the dark brown color of the original solution gradually faded during EO treatment. In another test using still bottom samples with lower total organic carbon (9,880 mg/L), the PFOA (15.5 mg/L) and PFOS (25.5 mg/L) concentrations were reduced to levels below the limits of quantification after 16‐hr treatment. In addition, the performance of EO treatment using different batch reactor setups was compared in this study, including one‐sided (one anode:one cathode) and two‐sided (one anode:two cathodes) setups. The two‐sided reactor configuration significantly enhanced the degradation efficiency, likely due to the larger anode area available for reactions.  相似文献   

15.
N-(Methylphenylmethylidenyl) chitosan (MPMC) polymer was synthesized by chemical modification of chitosan. The chemical structure of the modified polymer was characterized by IR, 1H NMR and elemental analysis. Thermogravimetric reveals that the thermal stability of chitosan polymer is greater than MPMC polymer. The activation energies of thermal degradation of chitosan and MPMC polymers determined using Arrhenius relationship. Thermal degradation of MPMC polymer was studied and the products of degradation were identified by GC–MS technique. It seems that the mechanism of degradation of MPMC polymer is characterized by elimination of low-molecular weight radicals. Combination or recombination of H· or OH with these radicals and random scission mechanism along the backbone chain are the main source of the degradation products.  相似文献   

16.
A Fenton process that uses FeCl2 as the alternative catalyst was employed to deal with the biologically treated landfill leachate. Data obtained revealed that this Fenton process can provide an equivalent pollutant removal as the Fenton process that uses FeSO4 as catalyst. Central composite design (CCD) and response surface methodology (RSM) were applied to evaluate and optimize the four key factors, namely initial pH, Fe(II) dosage ([Fe2+]), H2O2/Fe(II) mole ratio ([H2O2]/[Fe2+] ratio) and reaction time, which affect the performance of the Fenton treatment. Chemical oxygen demand (COD) and color were selected as response variables. This approach provided statistically significant quadratic models, which were adequate to predict responses and to carry out optimization under the conditions studied. It was demonstrated that the interaction between initial pH and [H2O2]/[Fe2+] ratio has a significant effect on the COD removal, while the interaction between [H2O2]/[Fe2+] ratio and reaction time shows a large impact on color removal. The optimal conditions were found to be initial pH 5.9, [Fe2+] = 9.60 mmol/L, [H2O2]/[Fe2+] ratio = 2.38, reaction time = 5.52 h. Under this optimal scheme, the COD and color in the effluent were reduced to 159 mg/L and 25°, respectively, with an increase of BOD5/COD ratio from 0.05 to 0.21.  相似文献   

17.
Fenton process, as a pretreatment method, was found to be effective in the primary treatment of mature/medium landfill leachate. However, the main problem of the process is the large amount of produced sludge that requires an accurate feasibility evaluation for operational applications. In this study, the response surface methodology was applied for the modeling and optimization of Fenton process in three target responses, (1) overall COD removal, (2) sludge to iron ratio (SIR) and (3) organics removal to sludge ratio (ORSR), where the latter two were new self-defined responses for prediction of sludge generation and applicability assessment of the process, respectively. The effective variables included the initial pH, [H2O2]/[Fe2+] ratio and Fe2+ dosage. According to the statistical analysis, all the proposed models were adequate (with adjusted R2 of 0.9116–0.9512) and had considerable predictive capability (with prediction R2 up to 0.9092 and appropriate adequate precision). It was found that all the variables had significant effects on the responses, specifically by their observed role in dominant oxidation mechanism. The optimum operational conditions obtained by overlay plot, were found to be initial pH of 5.7, [H2O2]/[Fe2+] ratio of 17.72 and [Fe2+] of 195 mM, which led to 69% COD removal, 2.4 (l sludge/consumed mole Fe2+) of SIR and 16.5 (gCOD removed/l produced sludge) for ORSR in verification test, in accordance with models-predicted values. Finally, it was observed that [H2O2]/[Fe2+] ratio and Fe2+ dosage had significant influence on COD removal, while Fe2+ dosage and [H2O2]/[Fe2+] ratio had remarkable effects on SIR and ORSR responses, respectively.  相似文献   

18.
A novel Fe3O4/cellulose–polyvinyl alcohol (PVA) aerogel was successfully synthesized by an eco-friendly and facile method in this work. Cellulose/PVA matrix was prepared through an environmental friendly physical cross-linking process and further in-situ decorated with Fe3O4. Series of Fe3O4 decorated aerogels were prepared and the effects of Fe3O4 nanoparticles (NPs) on the aerogels were systematic investigated. As-prepared aerogels exhibited desirable properties including nanostructure, relatively high porosity, improved mechanical and superparamagnetism. The TEM results showed that Fe3O4 NPs were integrated in the three-dimensional matrix of cellulose/PVA with a diameter of 9–12 nm. Furthermore, the mechanical strength of the aerogels was significantly enhanced after the introduction of Fe3O4 NPs. Meanwhile, the obtained Fe3O4/cellulose/PVA aerogel exhibited excellent adsorption performance toward methyl blue dye, and can be reused through fenton-like catalysts oxidative degradation of organic dye in H2O2 solution. Therefore, they will have a great potential application as eco-friendly and economical adsorbents.  相似文献   

19.
The textile and dyeing industries are among the largest water-consuming and polluting industries in the world. The most important feature of the textile dyeing industry wastewater is its color, due to the use of colored materials. Most of these dye compounds are resistant to conventional purification methods and their biodegradation is very low through secondary purification processes, resulting in incomplete removal. Therefore, selecting the optimal method to remove these color compounds is essential. In this study, we studied the removal of an organic dye contaminant (Reactive Blue dye 19 [RB19]) using advanced oxidation processes (AOPs). For this purpose, ultraviolet (UV) mercury lamps with a wavelength of 254 nm and a voltage of W16 inside a reactor were used as an energy source. The experiments were performed in a collimated beam reactor inside a dark chamber. Two oxidizers, sodium hypochlorite (NaOCl) and hydrogen peroxide (H2O2), were used to remove RB19 from the artificial sewage stream. Removal of RB19 with a concentration of 20 mg/L with variable pH (5, 7, and 9), oxidant concentrations (5, 10, and 20 mg/L), and time (5, 10, 15, and 30 min) were investigated during the processes of photolysis, chemical oxidation (by H2O2 and NaOCl), and UV/NaOCl and UV/H2O2 AOPs. The photolysis process did not remove the RB19. The highest removal efficiencies of RB19 by chemical oxidation processes with NaOCl and H2O2, UV/NaOCl, and UV/H2O2 at optimal conditions (pH = 5, [oxidant] = 20 mg/L, RB19 = 20 mg/L, and radiation intensity of 1005 mJ/cm2) were 64.49%, 0.88%, 99.7%, and 13.31%, respectively. These results indicate that the hydroxyl radical was produced, under optimum conditions, more in the acidic medium; thus, the RB19 removal efficiency was higher in the acidic medium. The combination of UV rays with oxidants resulted in the production of more hydroxyl radicals and increased removal efficiency.  相似文献   

20.
Clean-up techniques, which were developed for removing cationic heavy metals from contaminated soils, are inappropriate for the metalloid As, which is a common and highly toxic pollutant. Because arsenic is mainly found associated with the hydrous ferric oxides of the soil, a possible mechanism for the mobilisation of this element is the reductive dissolution of Fe(III) oxyhydroxides. In this paper we investigate the possibility to mobilise arsenic, using the Fe(III)-reducing bacterium Desulfuromonas Palmitatis. The initial experiments were carried out using a crystalline ferric arsenate as model compound, i.e. scorodite (FeAsO4.2H2O). D. palmitatis was found able to reduce the trivalent iron of scorodite at a percentage of 80% within 16 days, but arsenic remained in the pentavalent state, and reprecipitated with Fe(II) in the form of low solubility ferrous arsenates. To avoid the precipitation of ferrous arsenates the subsequent experiments with soil were conducted by combining the reducing ability of D. palmitatis with the chelating strength of EDTA (ethylenediamine tetracetic acid), which can form strong aqueous complexes with Fe(II). Approximately 60% of Fe and 75% of As were recovered in the aqueous solution in the presence of EDTA, while in the simple biological treatment no Fe was dissolved and only a 3% of As was mobilised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号