首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the potential of halloysite nanotubes (HNT) as nanofiller for polylactide (PLA), various nanocomposites have been successfully produced by melt-blending the polyester matrix with HNT (HNT(QM)). HNT were also surface treated by silanization reaction with 3-(Trimethoxysilyl) propyl methacrylate (TMSPM). The morphology, thermal, tensile and impact strength properties of the nanocomposites containing 3?C12?% HNT were evaluated and compared to those of pristine (unfilled) PLA. The nanocomposites were characterized by higher rigidity (with Young??s modulus increasing with HNT loading), higher tensile strength (about 70?MPa at 6?% HNT(QM)), whereas the elongation at break and impact strength did not decrease. As demonstrated under dynamic solicitation (DMA), melt-blending PLA with HNT led to enhancement of storage modulus (E??) and offers the possibility to use PLA in applications requiring higher temperatures of utilization. However, with few exceptions, TGA and DSC measurements did not reveal important changes of thermal parameters. The surface silanization treatment proved to improve the quality of the nanofiller dispersion even at higher loading. As a result, good thermal stability associated to high tensile strength, and noticeable increases in impact properties were recorded. Furthermore, enhanced nucleating ability and crystallization kinetics of the PLA matrix were revealed as specific characteristics.  相似文献   

2.
Blends of zein and nylon-6 (55?k) in formic acid were used to produce solution cast films and electrospun fibers. When the amount of nylon-6 was 8?% or less blends were formed that had improved tensile strength and reduced solubility. The blends were analyzed using physical property measurements, DSC and IR spectra. Using between 2 and 8?% nylon-6 provided a 33?% increase in tensile strength. Young??s modulus increased by over 50?% in this range. In general elongation was lower for all formulations. Surprisingly the cast films having 0.5?C8?% nylon-6 had improved solvent resistance to 90?% ethanol/water. Electrospun fibers were produced from formic acid solutions of zein and nylon-6 where the amount of nylon was 0, 2 and 6. Fibers produced from 27?% spinning solids had average diameters on the order of 0.5???m. Reducing the spinning solids to 21?% provide slightly smaller fibers however, the fibers had more defects.  相似文献   

3.
Rapid growth of the biofuel industry is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. The objective of this research effort is to quantify the effects on mechanical properties of adding DDGS and glycerol to polylactic acid (PLA). The methodology was to physically mix DDGS, as filler, with PLA pellets and injection mold the blends into test bars using glycerol as a plasticizer. The bars were subject to mechanical testing procedures to obtain tensile strength, tensile and flexural moduli, elongation to break, and surface hardness of blends from 0 to 90?%, by weight, of plasticized filler. Blends were typically relatively brittle with little or no yielding prior to fracture, and the addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the PLA, and 20?C30?% filler reduced strength by 60?%. The 35?C50?% filled PLA had about one-fifth the value for pure PLA; at 60?C65?% filler level, about 10?% tensile strength remained; and over 80?% filler, 95?% of the strength was lost. Over 20?% filler, the tensile modulus decreased. The 35?% plasticized, filled blend yielded about one-half the stiffness as the pure PLA case; flexural modulus trended in the same manner but demonstrated a greater loss of stiffness. Most blends had less than 3?% elongation to break while surface hardness measurements indicated that up to 60?% filler reduced Shore D hardness by less than 20?%. The tensile strength and modulus data are consistent with the findings of other researchers and indicate that the type of filler and amount and sequence of plasticization are secondary effects, and the total PLA displaced is the dominant factor in determining the mechanical strength of the PLA and DDGS blends. Up to 65?% plasticized DDGS filler can be injection molded, and sufficient mechanical strength exists to create a variety of products. Such a novel material provides higher-value utilization of the biofuel coproducts of glycerol and DDGS and maintains the biodegradable and biocompatible nature of PLA.  相似文献   

4.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

5.
To develop a high performance environment friendly material, highly branched polyester/clay nanocomposites have been prepared from Mesua ferrea Linn seed oil-based polyester resin and hydrophilic bentonite nanoclay. The prepared nanocomposites were characterized by Fourier transform infra-red spectroscopy, X-ray diffractometer, scanning electron microscope, transmission electron microscope and rheological studies. Partial exfoliation of clay layers by the polymer chains with good interfacial interactions was observed in the nanocomposites. The formation of delaminated nanocomposites was manifested through the enhancement of tensile strength, scratch hardness, chemical resistance, impact resistance, thermostability, etc. The results show enhancement of three times in tensile strength and 18 °C in thermostability by inclusion of 5 wt% nanoclay as compared to the pristine polymer. By the influence of 5 wt% nanoclay four times enhancement in elongation at break as compared to the pristine polymer was noticed. Thus these nanocomposites have the potential to be used in many advanced applications.  相似文献   

6.
Effects of Storage Time on Properties of Soybean Protein-Based Plastics   总被引:1,自引:0,他引:1  
Soybean protein has been considered as a potential biodegradable polymer in the manufacture of plastics. The purpose of this investigation was to characterize the effect of storage time on thermal and mechanical properties of soybean protein isolate (SPI) plastics. SPI was separated from defatted soy flour, modified with 1M or 2M urea, or plasticized with glycerol, and compression molded into plastics. Plastic made from SPI alone was used as a control. For all SPI plastics, glass transition temperatures and dynamic storage modulus increased and loss tangent decreased during storage. Excess enthalpy of relaxation of all SPI plastics had an exponential relationship with storage time, indicating a fast aging rate at the beginning of storage. All SPI plastics tended to be stiff and brittle during storage. The plastics with glycerol had the slowest aging rate and were fairly stable after 60 days, with about 8.8 MPa tensile strength and 168% strain at break. Plastics with the 2M urea-modification SPI also had a slow aging rate and became relative stable after 60 days, with about 10 MPa tensile strength and 72% elongation.  相似文献   

7.
The new unsaturated poly(ester-urethane) was synthesized by the reaction of 4,4??-methylenediphenyldiisocyanate with 4,4??-di(2,3-butenhydroxyl) terephthalate in the ratio of 1:1. 4,4??-di(2,3-butenhydroxyl) terephthalate was first prepared by reacting 2?mol of cis-2-butene-1, 4-diol with 1?mol of terephthalic acid. The terephthalic acid used was derived from the recycling of PET bottles via subjection to saponification process. The synthesized compounds were characterized by CHN analysis, FT-IR, 1H NMR and UV?CVis spectroscopy, with consistency of results showing the presence of the new unsaturated poly(ester-urethane) II. Thermal properties of the new polymer was verified by differential scanning calorimetry and thermogravimetric analysis, whereas the mechanical properties were characterized by tensile, elongation, hardness, adhesion and impact testing. The electrical conductivity and the electrical resistance of the compound were observed with increasing applied voltage.  相似文献   

8.
Polylactic acid (PLA)/starch fibers were produced by twin screw extrusion of PLA with granular or gelatinized starch/glycerol followed by drawing through a set of winders with an intermediate oven. At 30% starch, fibers drawn 2–5x were highly flexible (elongation 20–100%) while undrawn filaments were brittle (elongation 2–9%). Tensile strength and moduli increased with increasing draw ratio but decreased with increasing starch content. Mechanical properties were better for composites made with gelatinized starch/glycerol than granular starch. In conclusion, orientation greatly increases the flexibility of PLA/starch composites and this may be useful not only in fibers but also possibly in molded articles. Other advantages of starch addition could include fiber softness without added plasticizer, moisture/odor absorbency and as a carrier for active compounds.  相似文献   

9.
Biodegradable polymer composites were prepared from starch, crude glycerol, rapeseed cake and urea. The uniform films of the composites were prepared by casting technique. Mechanical properties and solubility in water of the films were studied. Increase of the content of rapeseed cake in the composites lead to the decrease of tensile strength and to the increase of elongation at break. The solubility of the composites in water increased with the increase of the content of rapeseed cake and urea. The changes of pH of soil being in the contact with the composite films were studied. It was established that the composites with the ratio of starch, rapeseed cake, crude glycerol and urea ranging from 4:6:3:0.2 to 4:6:3:1 can be used for the production of disposable plant pots. Too high content of urea can increase pH of soil up to the limit dangerous for plants.  相似文献   

10.
Jute yarns were grafted with a single impregnating monomer 1,6-hexanediol diacrylate (HDDA) in order to improve the physicomechanical properties. Jute yarns soaked for different soaking times (3, 5, 10, and 30 minutes) in HDDA+MeOH solutions at different proportions (1–10% HDDA in MeOH [v/v] along with photoinitiator Darocur-1664 [3%]) were cured under UV lamp at different UV radiation intensities (two, four, six, and eight passes). Concentration of monomer, soaking time, and intensity of UV radiation were optimized with extent of mechanical properties such as tensile strength, elongation at break, and modulus. Enhanced tensile strength (67%), modulus (108%), and polymer loading (11%) were achieved with 5% HDDA concentration, 5-minute soaking time, fourth pass of UV radiation. To further improve the mechanical properties, the jute yarns were pretreated with UV radiation (5, 10, 15, 30, and 50 passes) and treated with optimized monomer concentration (5%). UV-pretreated samples showed the enhanced properties. The tensile strength and modulus increase up to 84% and 132%, respectively, than that of virgin jute yarn. An experiment involving water absorption capacity shows that water uptake by treated samples was much lower than that of the untreated samples. During the weathering test, treated yarns exhibited less loss of mechanical properties than untreated yarns.  相似文献   

11.
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation.  相似文献   

12.
Corn starch and zein mixtures (4 : 1 dry weight) were extruded and injection-molded in the presence of plasticizers (glycerol and water). Tensile strength and percentage elongation of the molded plastics were measured before and after 1 week of storage under a dry or humid condition (11 or 93% RH). With 10–12% glycerol and 6–8% water, injection-molded plastics had relatively good tensile properties (20- to 25-MPa tensile strength and 3.5–4.7% elongation). But while exposed to dry conditions (11% RH), the molded plastics lost weight (0.5–1.5% in 7 days) and became very brittle, with significant decreases in tensile strength and elongation. Partial replacement (5–10%) of starch with a maltodextrin (average DE 5) reduced the glass transition and melting temperatures of the starch-zein mixture as well as the dry storage stability. Using potato starch instead of corn starch significantly improved the dry storage stability of the injection-molded starch-zein plastics (18- vs 11-MPa tensile strength). Anionic corn starches with a maleate or succinate group (DS<0.01) produced injection-molded plastics with improved tensile properties and storage stability. Plastics prepared from the starch maleate and zein mixture retained the strength during 1 week of dry storage without a significant change (26-MPa tensile strength and 3.7% elongation after 1 week of storage).Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Journal paper No. J-15561 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2863.  相似文献   

13.
Chitosan films were prepared from dried prawn shell via chitin and then tensile properties like tensile strength (TS) and elongation at break (Eb) of the films were evaluated. Six formulations were developed using methyl methacylate (MMA) monomer and aliphatic urethane diacrylate oligomer (M-1200) in methanol along with photoinitator (Darocur-1664). Then the films were soaked in the formulations and irradiated under UV radiation at different doses for the improvement of physico-mechanical properties of chitosan films. The cured films were characterized by measuring TS, Eb, polymer loading (PL), water absorption and gel content properties. The formulation containing 43% MMA and 15% oligomer in methanol solution showed the best performance at 20th UV pass for 4 min soaking time.  相似文献   

14.
The polypropylene (PP)/poly(ethylene-co-octene) (POE) blends was prepared by means of a twin screw extruder in a range of temperature from 185 to 195 °C. The mechanical properties including tensile, flexural and impact of the PP/POE blends were measured at room temperature to identify the effect of the POE content on the mechanical properties. It was found that the Young’s modulus, tensile strength and tensile elongation at break decreased nonlinearly with increasing the POE weight fraction. While the V-notched and unnotched impact fracture strength increased nonlinearly with an increase of the POE weight fraction. The flexural modulus and strength decreased roughly linearly with increasing the POE weight fraction. Furthermore, the impact fracture surface of the blends was observed by using a scanning electronic microscope and the toughening mechanisms were discussed.  相似文献   

15.
The tensile and combustion properties of polypropylene/polyolyaltha olefin composites filled with intumescent flame retardant (IFR) and nanometer calcium carbonate (nano-CaCO3) were measured. It was found that the values of the Young’s modulus of the composites increased almost linearly, while the values of the tensile yield strength and tensile fracture strength of the composites decreased with increasing the IFR weight fraction; the values of the elongation at break of the composites decreased quickly when the IFR weight fraction was lower than 10 wt%, and then varied slightly when the IFR weight fraction was higher than 10 wt%. Moreover, the morphology of the specimens after combustion was observed and the frame retardant mechanisms of the composites were discussed.  相似文献   

16.

Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation by solvent casting method, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77?×?10??8 g m??1 s??1 Pa??1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.

  相似文献   

17.
Thin films of gelatin were prepared by casting. Then the films were photocured and the mechanical properties were studied. The tensile strength of UV cured gelatin films showed about 10% enhancement than that of raw gelatin films. Minor amount of urea (1–5%) was used as additive in aqueous gelatin solution and films were prepared using same technique. Four formulations were prepared in methanol with 2-ethylhexyl acrylate in the presence of photoinitiator (darocur-1664). The films were soaked in the prepared formulations and then cured under UV radiation at different intensities (5–25 passes). Percentage of urea, monomer concentration, soaking time and radiation intensities were optimized with the extent of polymer loading, TS and elongation at break of the photocured film. The films containing 2% urea, cured with 3% EHA for 3 min at 15th UV pass showed the highest mechanical properties. A significant improvement of TS (31%) occurred when EHA (3%) was incorporated.  相似文献   

18.
Fabrication of complex injection molded parts often involves the use of multiple gates. In such situations, polymer melts from different gates meld to form the molded part (weld line). This paper reports on the fabrication and characterization of the mechanical and morphological properties of short fiber reinforced jute/poly butylene succinate (PBS) biodegradable composites. The effect of a dual gated mold in the fabrication of welded specimens was a key focus of the investigation. It was observed that incorporation of jute fiber (10 wt%) conferred drastic changes on the stress–strain properties of the matrix as the elongation at break (EB), dropped from 160% in the matrix to just 10% in the composite. The tensile strength of the composite was lower than that of the matrix. However, it is noteworthy that the tensile modulus of the composite increased. Bending test also revealed that both bending strength and modulus increased with the incorporation of jute. Morphological studies of the tensile fracture surface using SEM revealed two types of failure mode. Ductile failure was indicated by plastic deformation at the initiation of fracture followed by brittle failure. The good interfacial bonding indicated between jute and PBS was attributed to positive interaction between the two polar polymers. A comparison of the non-weld and weld-line samples revealed that the weld-line composites have better mechanical integrity than the corresponding polymer matrix with weld line. The results also revealed that elongation at break and toughness are most sensitive to the presence of the weld-line whereas flexural properties are least sensitive.  相似文献   

19.
Plastic blend materials consisting of poly(vinyl alcohol), glycerol and xanthan or gellan were prepared through laboratory extrusion. Their base mechanical properties were compared with the properties of poly(vinyl alcohol) foil and their biodegradability in soil, compost and both activated and anaerobic sludge were assessed. In samples with lower polysaccharide content (10–21 %w/w) the tensile strength of 15–20 MPa was found; the elongation at break of all blends was relatively close to the parameter of poly(vinyl alcohol) foil. The biodegradability levels of the blends tested corresponded to the content of natural components, and the mineralization of the samples with the highest carbohydrate proportion (42 %) reached 50–78 %, depending on the type of the environment. Complete biodegradation of all samples occurred in activated sludge.  相似文献   

20.
To develop an environmentally degradable polymer material, a masterbatch pro-oxidant system was blended into low-density polyethylene. The polymer film samples were prepared by compression molding. The prepared films were placed under the natural environment of Tehran for weathering studies and accelerated conditions were also performed for UV aging in UV chamber. At different time intervals, the changes in chemical structure of photosensitized polyethylene samples were studied by FTIR and compared to that of the control polyethylene films. Also the mechanical properties of photosensitized polyethylene films were determined in comparison with the control films by measuring the tensile strength and elongation at break after exposure to the natural environment and UV radiation. Results showed that the overall rate of degradation process is clearly dependent on the polyethylene composition, test conditions (natural or accelerated), season of the year, and the duration of the weathering of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号