首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Three procedures for the extraction of coral lipids were compared and a rapid and effective method for future use is suggested. This method was used to measure the lipid content of the branching coral Porites porites (Pallas) and the massive corals Montastrea annularis (Ellis and Solander) and Siderastrea siderea (Ellis and Solander) during July and August 1991. P. porites and M. annularis were sampled on two fringing reefs, each characterised by different water quality affecting light transmission, and at depths of down to 30 m on a barrier reef on the west coast of the island. m. annularis contained, on average, 29% of dry weight as lipid, and there were no significant differences in lipid levels between corals sampled on either fringing reef at 3 and 6 m, or between fringing reefs and the barrier reef at 13, 20 or 30 m depth. Five samples were also taken from a single massive colony of S. siderea at 3 m on a fringing reef and at 13, 20 and 30 m depth on the barrier reef. Values for lipid ranged from 26 to 35% of dry tissue weight. P. porites from 3 and 6 m depth on both fringing reefs contained the same amount of lipid (11% of dry tissue weight). However, at 13 m depth on the barrier reef this coral contained significantly less lipid (8.5% of dry tissue weight). This difference may be attributable to a higher nutritional intake by P. porites on the fringing reefs.  相似文献   

2.
A mass mortality of Strongylocentrotus droebachiensis, attributed to disease, was monitored in an echinoiddominated barren ground at Eagle Head on the south-western coast of Nova Scotia, Canada, in 1982. Mortality was 70% in a shallow (3 m) nearshore area, resulting in a loss of echinoid biomass of 2 042 g fresh weight m-2, and 6% in deeper (7 m, 10 m) offshore areas. Echinoid density, size and nutritional condition (gonad index) were highest in the nearshore area. Survivorship was higher in juveniles (<15 mm diameter) than in adults resulting in the formation of a bimodal size distribution in the nearshore area. Mortality began around early October, near the peak of the annual cycle of seawater temperature (15°C), and was arrested by early December (seawater temperature 7°C) when morbid echinoids appeared to recover. In laboratory experiments, time to morbidity of S. droebachiensis exposed to morbid conspecifics increased exponentially with decreasing temperature (20° to 8°C). There was no survival at 20° and 16°C, 20% survival at 12°C and 100% survival at 8°C after 60 d; suggesting a lower temperature limit (between 12° and 8°C) for possible transmission of a pathogenic agent. Morbid laboratory echinoids from experiments at 16°C, and recovering echinoids collected in the nearshore area in early December, showed 100 and 85% survival respectively at <=8°C, and 0 and 15% survival respectively at 16°C, after 30 d. Time to morbidity was not affected significantly by nutritional condition and was similar for juvenile and adult echinoids. Time to morbidity was greater in echinoids exposed to one or three morbid individuals continuously, or seven morbid individuals for 1 h, relative to higher levels of exposure (up to seven morbid individuals continuously). Recent mass mortalities in S. droebachiensis have occurred in years of record high sea surface temperatures. The extent of mortality is correlated with the magnitude and duration of temperatures above a lower limit.  相似文献   

3.
The foraging behaviours and dietary compositions of three co-occurring labrids (Ophthalmolepis lineolatus, Notolabrus gymnogenis and Pictilabrus laticlavius), which are conspicuous on rocky reefs in temperate south-eastern Australia, were investigated between 2003 and 2005. SCUBA observations at two locations showed that the feeding intensity, and hence the associated effects of these fishes on rocky reef invertebrate prey, was temporally consistent. Relative differences in the contributions of ingested prey and use of different feeding microhabitats demonstrated that the feeding ecology differed significantly among the three species. Thus, O. lineolatus fed on proportionately higher volumes of polychaetes, polyplacophorans, marginellid gastropods (especially Austroginella sp.), bivalves and echinoids, which were sighted opportunistically in a wide selection of microhabitats, but particularly in sand/rubble. Ambush hunting was used regularly by smaller N. gymnogenis and all sizes of P. laticlavius to forage on amphipods, small decapods and small gastropods at algal bases or fronds and Diopatra dentata tubes. Amphipods were similarly important in the diet of smaller O. lineolatus. Larger N. gymnogenis foraged opportunistically over an increased reef area and made greater use of microhabitats that offered minimal prey refuge (e.g. sand/rubble, bare rock/steel) from which common prey, in particular decapods, were obtained. The significant intra- and inter-specific differences in dietary compositions, allied with differences in the use of feeding microhabitats, would facilitate co-occurrence of these three conspicuous species and contribute to maintaining high richness of labrid species in reef systems. Echinoids were regularly consumed by each species but they made a moderate contribution to the diet of only O. lineolatus, which suggests that only one of the three labrids is likely to play a significant role in regulation of echinoid densities in these rocky reef habitats. However, the broad diets and diverse forging strategies employed by these labrid species imply that they have a system-wide influence on invertebrate prey on rocky reefs.  相似文献   

4.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

5.
Extreme tidal events are one of the most predictable natural disturbances in marine benthic habitats and are important determinants of zonation patterns in intertidal benthic communities. On coral reefs, spring low tides are recurrent disturbances, but are rarely reported to cause mass mortality. However, in years when extremely low tides coincide with high noon irradiances, they have the potential to cause widespread damage. Here, we report on such an event on a fringing coral reef in the central Great Barrier Reef (Australia) in September 2005. Visual surveys of colony mortality and bleaching status of more than 13,000 corals at 14 reef sites indicated that most coral taxa at wave-protected sites were severely affected by the event. Between 40 and 75% of colonies in the major coral taxa (Acropora, Porites, Faviidae, Mussidae and Pocilloporidae) were either bleached or suffered partial mortality. In contrast, corals at wave-exposed sites were largely unaffected (<1% of the corals were bleached), as periodic washing by waves prevented desiccation. Surveys along a 1–9 m depth gradient indicated that high coral mortality was confined to the tidal zone. However, 20–30% of faviid colonies were bleached throughout the depth range, suggesting that the increase in benthic irradiances during extreme low tides caused light stress in deeper water. Analyses of an 8-year dataset of tidal records for the area indicated that the combination of extended periods of aerial exposure and high irradiances occurs during May–September in most years, but that the event in September 2005 was the most severe. We argue that extreme low-tide, high-irradiance events are important structuring forces of intertidal coral reef communities, and can be as damaging as thermal stress events. Importantly, they occur at a time of year when risks from thermal stress, cyclones and monsoon-associated river run-off are minimal.  相似文献   

6.
Mitochondrial control region (HVR-1) sequences were used to identify patterns of genetic structure and diversity in Naso vlamingii, a widespread coral reef fish with a long evolutionary history. We examined 113 individuals from eight locations across the Indo-Pacific Ocean. Our aims were to determine the spatial scale at which population partitioning occurred and then to evaluate the extent to which either vicariance and/or dispersal events have shaped the population structure of N. vlamingii. The analysis produced several unexpected findings. Firstly, the genetic structure of this species was temporal rather than spatial. Secondly, there was no evidence of a barrier to dispersal throughout the vast distribution range. Apparently larvae of this species traverse vicariance barriers that inhibit inter-oceanic migration of other widespread reef fish taxa. Thirdly, an unusual life history and long evolutionary history was associated with a population structure that was unique amongst coral reef fishes in terms of the magnitude and pattern of genetic diversity (haplotype diversity, h = 1.0 and nucleotide diversity π = 13.6%). In addition to these unique characteristics, there was no evidence of isolation by distance (r = 0.458, R 2 = 0.210, P = 0.078) as has also been shown for some other widespread reef species. However, some reductions in gene flow were observed among and within Ocean basins [Indian–Pacific analysis of molecular variance (AMOVA), Φ st = 0.0766, P < 0.05; West Indian–East Indian–Pacific AMOVA Φ st = 0.079, P < 0.05]. These findings are contrasted with recent studies of coral reef fishes that imply a greater degree of spatial structuring in coral reef fish populations than would be expected from the dispersive nature of their life cycles. We conclude that increased taxon sampling of coral reef fishes for phylogeographic analysis will provide an extended view of the ecological and evolutionary processes shaping coral reef fish diversity at both ends of the life history spectrum.  相似文献   

7.
Molluscan assemblages were studied on fringing reefs (reef flats, Millepora-fringing reefs, fringing reefs with massive corals) and fore-reef hard substrata (coral patches, coral carpets and small patch reefs) in the Gulf of Aqaba at water depths ranging from the intertidal to 26 m. A total of 1,665 molluscan individuals from 51 taxa was counted on 44 transects, which covered 220 m2 at eight diving sites. The most important molluscs in the assemblage were the parasitic gastropod Coralliophila neritoidea, the encrusting gastropod Dendropoma maxima and the coral-associated bivalve Pedum spondyloideum. The dead assemblage, in contrast, was dominated by encrusting bivalves (Ostreoidea, Chamoidea, Spondylidae) and the coral-predating gastropod Drupella cornus. Distinct molluscan assemblages inhabit each of the three fringing reef-habitats and most of the important depth-related community changes occurred within the uppermost 5 m. In contrast, the three deeper fore-reef habitats are characterized by a more uniform molluscan composition. Molluscan assemblages were more dependent on substrata and their coral associations than on water depth. Comparisons with other published studies indicate that reefoidal hard substrata in the northern Red Sea are largely characterized by similar species-abundance patterns. The minor differences to other Red Sea studies probably reflect the northern, isolated position of the Gulf of Aqaba, the lack of certain molluscan habitats, and the differential impact of anthropogenic influences. Strong differences between living and dead assemblages in Aqaba are similar to those observed in other regions and are due to distinct biases in the dead assemblage. Molluscs closely associated with living corals (mostly bivalves and Dendropoma) can easily be overgrown after death and are thus undetectable in visual censuses. Some gastropod taxa are preferentially transported into surrounding soft-substrata postmortem or redistributed by hermit crabs. Such complex relationships between ecology and taphonomy are crucial in evaluating the quality of the molluscan fossil record in coral reef environments. The comparison of our results with literature data documents an increase in coral predators during the last two decades in the northern Red Sea. Due to the greater mollusc biodiversity in the shallower Aqaba reef habitats, damage to this coral reef zone would have the greatest impact on the overall mollusc community.  相似文献   

8.
Common Hawaiian and Enewetak corals were examined to determine the method and mining of reproduction. Of the 7 Hawaiian species examined for the release of planulae, only 2 have planulated in captivity, Pocillopora damicornis and Cyphastrea ocellina. Both planulate year-round and both are characteristic of reef flats. Four of the 5 species which did not planulate were found to contain eggs, but not planulate, when polyps were examined microscopically. These 5 species do not usually occur on reef flats. Seven of the 12 Enewetak species examined in June, July, August and January planulated; 4 of these were pocilloporids, all of which are common in shallow water. Only 3 of the 8 species of Acropora planulated, and these 3 occur solely in shallow water. A greater proportion of the Pocillopora spp. colonies than Acropora spp. colonies planulated and they released more planulae per head. In previous studies and in this one, coral species which have released planulae are characteristic of shallow-water environments such as reef flats. Most of the 10 species reported on here which failed to planulate in captivity are not commonly found on reef flats. The failure to detect planulation in so many species, particularly those of deeper water, suggests that common hermatypic corals may not all reproduce in the same way, and that mode of reproduction may be related to habitat.  相似文献   

9.
Marine bdellovibrios have not previously been reported from the southern hemisphere, and knowledge of their occurrence in marine ecosystems is rudimentary. This study examined quantitative and qualitative aspects of bdellovibrios parasitic to the bacterium Vibrio alginolyticus at each of three representative tropical marine habitats of the Great Barrier Reef. Bdellovibrios were found in the water column throughout a 12 mo period from May 1992 at a sandy beach, a mangrove and a fringing coral reef. Their abundance was correlated with water temperature (P<0.001) and was highest in summer, lowest in winter and intermediate in spring and autumn. Over the sampling period, bdellovibrios were most abundant at the mangrove habitat (36.6 ml-1) and least abundant at the reef (9.5 ml-1), but there was substantial variability in numbers at all habitats among seasons and months of the year. On some occasions no bdellovibrios were found in replicate samples from the beach and reef habitats, while on others the maximum detectable by the method used (180 ml-1) was sometimes found at the beach and mangrove habitats. Bdellovibrios within each habitat were uniformly distributed among sampling sites (P>0.05). They were more abundant in sub-surface than bottom waters in summer, but the reverse occurred in winter. Midwater samples usually had least bdellovibrios. Bdellovibrio numbers were significantly correlated with those of potential host bacteria—colony-forming bacteria at all habitats and total bacteria at the beach and reef habitats. Strain characteristics, primarily based on host range, indicated qualitative differences in bdellovibrio populations among habitats. Pseudomonas atlantica, P. aeruginosa, P. marina, Cytophaga marinoflava, Vibrio gazogenes, V. mimicus and a Spirillum-like bacterium were not parasitised by bdellovibrios from any habitat. Of the other 25 Vibrio spp. tested, most were parasitised by the majority of bdellovibrio strains from each habitat. Strain differences were principally with respect to parasitism of non-Vibrio bacteria. All strains required Na+ and grew at 35°C, but some failed to grow at 15°C.  相似文献   

10.
The biochemical and energetic composition of body components of ten species of bathyal echinoids, and an asteroid, a holothuroid and a stalked crinoid were determined from individuals sampled from a variety of deep-water sites near the Bahamas (north Caribbean Sea) in October 1988. When compared with other studies of echinoderms, no geographic- or depth-related differences in biochemical or energetic composition were found. Body-wall tissues were composed primarily of skeletal material (mineral ash), but were comparatively high in organic material in the echinothuriid echinoids, and the asteroid and holothuroid. Gut tissues and pyloric cecae had high levels of lipid and protein, indicating their potential role in nutrient storage. Body-wall tissues were generally low in energy, but were highest in the echinoidsAraeosoma belli (7.7 kJ g–1 dry wt) andSperosoma antillense (8.0 kJ g–1 dry wt), the asteroidOphidiaster alexandri (8.9 kJ g–1 dry wt), and the holothuroidEostichopus regalis (13.1 kJ g–1 dry wt). Energy levels of gut and pyloric cecal tissues were two to three times higher than those of body-wall tissues. Total somatic tissue energy values varied greatly among species, ranging from 1.5 kJ in the echinoidAspidodiadema jacobyi to 142.1 kJ inE. regalis. As the bathyal echinoderms examined in this study occur in great abundance, they represent a significant reservoir of organic and inorganic materials and energy in deep-water benthic systems.  相似文献   

11.
The short-term movements and behaviour of whale sharks (Rhincodon typus Smith, 1828) during March 1994 and April 1997 are reported from data collected by acoustic tracking and archival tags at Ningaloo Reef on the north west coast of Western Australia. Sharks were tracked for up to 26 h and generally swam slowly at ≃0.7 m s−1 parallel to the reef edge; occasionally they swam in a wide arc adjacent to passes in the reef. All tracked sharks made regular dives through the water column, mostly from the surface to near the bottom. These dives did not appear to be related to hydrographic features, and the sharks were probably searching the water column for food. Most sharks were accompanied by other fishes, usually the golden trevally Gnathanodon speciosus. Received: 19 January 1999 / Accepted: 22 June 1999  相似文献   

12.
Production and doubling times of the bacterial populations in the water around and over the reefs at Lizard Island, Great Barrier Reef were measured during summer and winter, 1982 and 1983. Bacterial productivity, determined from the rate of tritiated thymidine incorporation into DNA, was high over the reef flats and a Thalassia hemprichii sand flat (28 to 58 g Cl-1 d-1). Bacterial growth rates increased during the day and fell at night over the reef flats and seagrass bed. Growth rates were slower over the reef front and in open water. Doubling times ranged from about 2 d in the open water to about 3 h over the reef flat in summer. As numbers did not increase, grazing was probably intense on the reef flats. Growth rates were much slower in winter. The main source of organic nutrient used by the bacteria was probably mucus released following photosynthesis in the corals. The cyanobacterium Synechococcus sp. was sometimes very numerous, especially in summer when 2×108 cells l-1 were recorded in one water mass. The number of bacteria was also very high in summer, with values ranging from 1×109 to 2.5×109l-1.  相似文献   

13.
C. Mora  A. Ospina 《Marine Biology》2002,141(4):789-793
The eastern tropical Pacific (ETP) reefs are affected at irregular times by extremely cold temperatures that occur principally during La Niña events. The effects of these low temperatures on the survival of reef fishes were experimentally assessed by determining the critical thermal minimum (CTM) of 15 reef fish species from Gorgona Island (ETP), and comparing these CTMs with the records of temperature during past La Niña events. Among species, mean CTMs ranged from 10.8°C to 16.3°C, which were lower than the coldest temperature recorded during the last La Niña event (18°C during La Niña 1998-1999). However, the observed ranges of CTM for two species (Thalassoma lucassanum and Eucinostomus gracilis) extended above 18°C. These results suggest that most of the reef fishes we studied are physiologically tolerant to the cold temperatures encountered during La Niña, though decreases in at least two populations may be expected as a result of the mortality of less tolerant individuals. Although tolerant to cold temperatures, reef fish populations may still experience negative changes during La Niña, because other determinants in population maintenance (e.g. reproduction and recruitment) are more temperature sensitive. The effects of other cold phenomena on reef fish survival are also discussed herein.  相似文献   

14.
Studies were carried out on the inner and outer coral reefs at Diani Beach on the Kenya coast to assess the distribution, density and behaviour of Echinometra mathaei (de Blainville). Transects 1 m wide were run on the two reefs in April, June and September, 1970. Test measurements on representative samples from the animal populations on both reefs were also taken. Direct observations on specimens of E. mathaci in selected rock pools on the outer reef were made to determine their movement, gregariousness, homing and feeding behaviour. Population density was higher on the inner reef furthest from the sea at low tide than on the outer reef. On the submerged inner coral reef at low tide, E. mathaei occurred mainly exposed on the seaweeds, but, on the exposed outer reef, its main niches were crevices in rock pools and under coral ledges. Sizefrequency distributions revealed that smaller individuals occurred on the inner reef and larger ones on the outer reef. The growth rate of E. mathaei was estimated from the positions of modal values, calculated from size-frequency distributions. No gregarious or homing behaviour was observed and, once settled in a suitable crevice, E. mathaei showed little movement.  相似文献   

15.
Effects of ambient ultraviolet light on the survivorship of eggs and planulae larvae was investigated for three species of broadcast-spawning reef corals, Acropora palmata, Montastraea annularis, and M. franksi. Eggs and larvae from these corals contain high concentrations of lipids (60–70% by weight) and float in surface waters for 3–4 days following spawning. Larvae originating from colonies living at deeper sites on the reef exhibited significantly lower survivorship than conspecifics originating from parents in shallow water when experimentally exposed for up to 4 days to ambient surface levels of ultraviolet radiation (UVR). Concentrations of the UVR-protective compounds correlated positively with survival and matched concentrations found in parent colonies, implying that higher concentrations of ultraviolet B protective compounds are responsible for greater survival of eggs and larvae from shallow compared to deeper-dwelling parents. Ultraviolet B appears to be responsible for most of the observed differences in larval survivorship with ultraviolet A playing a minor or insignificant role. Data presented here indicate that coral recruits on Caribbean reefs and elsewhere may originate primarily from adult colonies dwelling in shallow water.Communicated by P.W. Sammarco, Chauvin  相似文献   

16.
Plankton samples were taken from January to June 1987 in Kaneohe Bay, Oahu, Hawaiian Islands, with a free-fall plankton net, to investigate the fine-scale distribution of larval fishes around coral reefs. Daytime samples indicated that the postflexion larvae of two gobiids (Psilogobius mainlandi and an unidentified species) were significantly more abundant at stations immediately adjacent to reefs (near-reef) than at stations in open water off the reef (off-reef). These postflexion gobiid larvae appeared to be capable of resisting advection and dispersal while remaining in the water column near suitable adult habitats. The larvae of Foa brachygramma (Apogonidae) and Encrasicholina purpurea (Engraulidae) were significantly more abundant at off-reef stations than at near-reef stations. Nighttime samples indicated that the gobiid larvae depend on visual cues to remain near the reef. The horizontal distributions of F. brachygramma and E. purpurea larvae appeared to be related to their vertical positioning. These data suggest that typical ichthyoplankton surveys which do not sample close to adult fish habitats would greatly underestimate the abundances of larvae such as the gobiids.  相似文献   

17.
Water motion is an important factor affecting planktivory on coral reefs. The feeding behavior of two species of tube-dwelling coral reef fish (Chaenopsidae) was studied in still and turbulent water. One species of blenny, Acanthemblemaria spinosa , lives in holes higher above the reef surface and feeds mainly on calanoid copepods, while a second, A. aspera , lives closer to the reef surface, feeds mainly on harpacticoid copepods, and is exposed to less water motion than the first. In the laboratory, these two blenny species were video recorded attacking a calanoid copepod ( Acartia tonsa, evasive prey) and an anostracan branchiopod (nauplii of Artemia sp., passive prey). Whereas A. spinosa attacked with the same vigor in still and turbulent water, A. aspera modulated its attack with a more deliberate strike under still conditions than turbulent conditions. For both fish species combined, mean capture success when feeding on Artemia sp. was 100% in still water and dropped to 78% in turbulent water. In contrast, when feeding on Acartia tonsa, mean capture success was 21% in still water and rose to 56% in turbulent water. We hypothesize that, although turbulence reduces capture success by adding erratic movement to Artemia sp. (passive prey), it increases capture success of Acartia tonsa (evasive prey) by interfering with the hydrodynamic sensing of the approaching predator. These opposite effects of water motion increase the complexity of the predator-prey relationship as water motion varies spatially and temporally on structurally complex coral reefs. Some observations were consistent with A. aspera living in a lower energy benthic boundary layer as compared with A. spinosa: slower initial approach to prey, attack speeds modulated according to water velocity, and lower proportion of approaches that result in strikes in turbulent water.Communicated by P.W. Sammarco, Chauvin  相似文献   

18.
The present study provides the first analysis of the feeding macroecology of territorial damselfishes (Perciformes: Pomacentridae), a circumtropical family whose feeding and behavioral activities are important in structuring tropical and subtropical reef benthic communities. The analyses were conducted from data collected by the authors and from the literature. A strong positive correlation was observed between bite rates and sea surface temperature (SST) for the genus Stegastes. A negative correlation was found between bite rates and mean body size for the genera Stegastes and Pomacentrus, but this relationship was not significant when all territorial pomacentrids were analyzed together. A negative correlation between body size and SST was observed for the whole group and for the genera Stegastes, and Pomacentrus. No relationship was found between territory size and feeding rates. Principal Components Analysis showed that differences in feeding rates accounted for most of the variability in the data. It also suggested that body size may be important in characterizing the different genera. In general, tropical species are smaller and have higher bite rates than subtropical ones. This study extended the validity of Bergmann’s rule, which states that larger species or larger individuals within species occur towards higher latitudes and/or lower temperatures, for an important group of reef fishes. The identification of large-scale, robust ecological patterns in the feeding ecology of pomacentrid fishes may establish a foundation for predicting large-scale changes in reef fish assemblages with expected future changes in global SST.  相似文献   

19.
Courtship and spawning are described for Pomacanthus imperator and 4 Centropyge spp. at Enewetak Atoll, Marshall Islands, observed from 15 August to 15 September, 1981. In all species, courtship and spawning occur at dusk, continue throughout most of the lunar month, are preceded by male display to the female, and culminate in the pair's shedding gametes into the water column. The species differ in ascent height, details of courtship behavior, spawning location relative to prominent reef topography and degree and type of sexual dichromatism. Social organization in all species appears based on male defense of harems of 2 to 5 females. Observed behavior is compared to that of confamilials, and discussed relative to proposed theories concerning lunar periodicity of spawning activity, sexual dichromatism and the adaptive significance of spawning ascent behavior.  相似文献   

20.
S. Uthicke 《Marine Biology》1997,129(3):435-441
Asexual reproduction by fission was monitored for 18 mo in populations of Holothuria (Halodeima) atra, H. (H.) edulis and Stichopus chloronotus on three nearshore fringing reefs and one midshelf reef in the Great Barrier Reef. Fission in S. chloronotus occurred exclusively between March and October, with a peak value of 31% recently divided individuals in one population in July. H. atra showed a similar pattern, with maxima of between 16 and 26% from May to July. In H. edulis, asexual reproduction occurred only between March and July, with a maximum of 17% recently divided individuals in March. Fission rates of H. atra and S. chloronotus in winter were significantly higher than in all other seasons. For H. atra, at least 76% of all individuals at Fantome Island were estimated to undergo fission per year, whereas only 9% undergo fission on the midshelf reef. Highest annual fission rates (43%) for S. chloronotus were found in a dense population on Great Palm Island. The lower-density midshelf reef population exhibited comparatively lower annual fission rates (19%). About 24% of H. edulis undergo fission each year. Annual fission rate and population density were positively correlated in the four populations of S. chloronotus and H. atra studied. Received: 21 March 1997 / Accepted: 26 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号