首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
利用2005-2019年OMI-OMAERUV L2气溶胶数据集,研究了近15年华中地区吸收性气溶胶指数(UVAI)的时空分布特征和主导气溶胶类型,探究下垫面变化和人为及气象因素的影响.结果表明:1在时间分布上,华中地区UVAI的年际变化整体呈波动上升趋势;2005-2008年UVAI波动下降,2009-2013年逐年增加并于2013年达到近15年来的最高值(0.767),2014-2019年逐年下降.2在空间分布上,UVAI整体由华中南部向北部递增,豫东平原、南阳盆地及武汉、长沙附近的城市群为高值区;UVAI的稳定性整体呈现“北低-南次之-中部高”的分布格局.3从季节变化来看,冬>春>秋>夏,冬季大部分区域由高值覆盖,夏季全境低值;气温、降水和UVAI均呈显著负相关;结合风场和压场进一步分析发现,加强源、较差的大气扩散条件和弱降水使冬季呈现大范围高值,夏季充沛雨水的冲刷作用叠加良好的大气扩散条件使得UVAI在夏季全境低值;气温、降水和大气扩散条件是导致UVAI呈明显季节性变化的重要环境因子.4一氧化碳指数(COI)与UVAI的季均和年均空间分布一致且随季节同步变化,冬季UVAI高值区域的COI值>2.8;华中地区的吸收性气溶胶为碳质主导.52005-2018年林地、湿地和水域面积分别增长21.1%、67.9%、2.3%,扩大了环境容量,提高了污染物的代谢速度;城市及建设用地面积增长14.3%,致使该类排放源逐年加强;UVAI与人口增长率和第一、二产业的增加值均呈显著正相关,结合大气排放清单分析,工业源、居民源、农业源为人为因素中的主导因素.  相似文献   

2.
李逢帅  巨天珍  马超  咸龙 《中国环境科学》2019,39(10):4082-4092
基于OMAERUV数据日产品,对甘肃省2008~2017年吸收性气溶胶指数(UVAI)的时空分布进行了分析,并对其相关因素进行了探讨,结果表明:该省近10a UVAI空间格局为由西北向东南区域逐步递减,UVAI的高值区域一直分布在酒泉市及邻近区域,为吸收性气溶胶污染源中心;甘肃省UVAI的稳定性呈现从东北向西南区域逐渐降低的规律;UVAI月均值呈现出明显的规律性,每年的月变化均呈现"V"型;四季UVAI水平为:冬季 > 春季 > 秋季 > 夏季,四季变化规律基本同步,十年来四季的UVAI呈逐渐上升趋势,且四季中主导的吸收性气溶胶来源不同.基于PM2.5的UVAI指示的空气质量等级分析,甘肃省空气质量以良为主;从气象因素与UVAI相关性分析来看,降水量、气温均与UVAI之间呈现显著正相关,风向也对其空间分布有重要影响;植被覆盖度与UVAI呈现正相关的区域主要分布在甘肃省西北部、武威市中部区域,呈现负相关的甘肃南部天水、陇南等区域为较高的植被覆盖区域.从人类活动因子与UVAI相关性来看,地区生产总值、各产业产值与UVAI有着明显的正相关性,尤其以第二产业与UVAI相关性最高;UVAI与汽车保有量、能源消耗总量及人口密度均存在较强的正相关,说明汽车尾气和工业排放及建筑粉尘也是吸收性气溶胶的重要来源.针对甘肃省UVAI时空分布特点、自然及人类活动因素分析情况,提出了减少人类活动强度等建议.  相似文献   

3.
基于臭氧检测仪(Ozone Monitoring Instrument,OMI)的遥感数据,利用ArcGIS10.2对2005—2020年中三角地区(湖北省、湖南省、江西省)紫外吸收性气溶胶指数(Ultraviolet Aerosol Index,UVAI)的时空变化进行分析,结合气溶胶颗粒物(PM2.5、PM10)和气态污染物(CO)数据,利用HYSPLIT(Hybrid Single-Particle Lagrangian Integrated Trajectory model)方法研究主要污染城市气溶胶颗粒物的来源与传输路径,通过核密度估计法、相关性分析、聚类分析,研究其影响因素.结果表明:(1)在空间分布上,中三角地区吸收性气溶胶的高值区集中在襄阳市北部、孝感市东部、武汉市西部;在时间分布上,2008年UVAI最低,2014年达到最大值;季节分布具有明显变化,2005—2020年吸收性气溶胶指数季均值为冬季>春季>秋季>夏季.(2)UVAI与人口增长率、第二产业产值占总产值的比重呈正相关性,与节能环保预算支出呈显著负...  相似文献   

4.
基于2008~2017a每天的OMI Level-2数据产品,对宁夏回族自治区吸收性气溶胶指数(UVAI)时空分布特征进行了研究,并对其环境因子(自然与人类活动)进行了相关性分析及冗余分析.结果表明:宁夏回族自治区近10a UVAI空间格局为西北向东南区域逐步递减,UVAI高值区域一直分布在中卫市全境及吴忠市、银川市和石嘴山市的大部分区域.每年的UVAI月变化均呈现“V”型,四季变化特征为冬季 > 秋季 > 春季 > 夏季,2013a是UVAI由低值向高值突变的年份,2017年UVAI达到十年最高值.结合Theil-Sen Median趋势分析和Mann-Kendall检验结果:季节变化趋势为春季无显著减少,夏季无显著增加,秋季极显著增加,冬季表现为显著增加和极显著增加;年际变化趋势表现为逐年增加,且5市UVAI增加程度不同.UVAI空间变化稳定性呈现由中卫市向南北两边逐渐降低,高低差异显著的分布格局,变异系数区间为0.293~0.442.影响因素中,温度对气溶胶气团存活时间影响最大,能源消耗结构,产业总值及第二产业(工业、建筑业)对气溶胶的生成具有重要影响,降水的影响次之.平均风速、最大风速对宁夏回族自治区高空中气溶胶气团的停留时间表现为较大的负相关.  相似文献   

5.
粤港澳大湾区吸收性气溶胶的解析   总被引:2,自引:2,他引:0  
为了解粤港澳(Guangdong-Hong Kong-Macao,GHM)大湾区气溶胶污染现状,基于OMAERUV日产品数据,对粤港澳大湾区2008~2019年吸收性气溶胶指数(ultraviolet aerosol index,UVAI)的时空分布、未来趋势变化和潜在源区进行了分析,并对其影响因素进行了探讨.结果表明,GHM大湾区年时间序列上UVAI呈现出下降的趋势,年均下降为2.3%;月时间序列上从春季开始呈现倒"V"形,季节特征春季最高,冬、秋次之,夏季最低;空间上呈现中部区域一直属于高值区,12年年均UVAI高达0.35;UVAI分布在时间序列主要表现为可持续,有82.69%的区域在未来UVAI将呈现下降的趋势;GHM大湾区外部潜在源主要是东部工业产生的碳质源和海洋带来的生物源;UVAI潜在源区春季以碳质源和生物质源为主,夏季以生物质气溶胶源为主,秋季以碳质源占比最大,冬季沙尘性质气溶胶源有所增加;通过相关性分析,气溶胶和PM2.5之间是相互依附的关系,工业生产活动是大气气溶胶的重要组成部分,降水可以降低大气中因工业生成所产生的气溶胶含量,第二产业活动在气温升高的情况下会加快气溶胶的生成.  相似文献   

6.
基于OMAERUV遥感数据产品,对兰州地区2008—2017年紫外吸收性气溶胶指数(ultraviolet aerosol index,UVAI)的时空分布进行了分析,并对其变化相关因素进行了探讨,结果表明:兰州地区2008—2017年UVAI整体呈上升趋势,年均值增幅为7.0%,2008—2010年UVAI出现了最大增长率53.1%,2011—2015年UVAI出现了最大降低速率18.5%,2016—2017年UVAI在2015年的基础上继续下降,2017年有所上升.2008—2017年兰州地区UVAI的空间分布特征为中间高、东西两侧低.10年来研究区UVAI最高值一直为永登县和皋兰县结合部及相邻区域,也是吸收性气溶胶的污染源中心.每年的最高值出现在1—2、11—12月,10年中最大的UVAI值出现在2017年的12月,每年的最低值出现在6—7月,10年中最低的UVAI值出现在2017年6月,四季UVAI值水平为:冬季春季秋季夏季.影响因素中UVAI与自然要素中的风向、温度和降水关系密切,兰州各地区的人口密度也与UVAI的变化具有相关性;基于PM_(2.5)的UVAI指示的空气质量等级分析,兰州地区空气质量以良为主.针对兰州地区UVAI的时空分布特点、吸收性气溶胶外源和内源污染源情况,提出了在永登县北部区域建设防护林带、减少人为活动强度等建议.  相似文献   

7.
基于臭氧监测仪(OMI)卫星反演数据,对2005~2018年西北4省区域大气甲醛柱浓度数据进行提取及分析,探讨其时空变化特征及影响因素.结果表明:在时间变化上,14a甲醛柱浓度整体呈先上升后下降的波动变化趋势,夏秋季显著高于冬春季,且冬季均值略高于春季.在空间分布上,甲醛柱浓度自西向东、自北向南逐渐升高,高值区集中于陕西和甘肃东南部及青海西南部;低值区集中于宁夏、青海和甘肃的西北部;稳定性呈现出东部分散、西部集聚、差异显著的分布格局.影响甲醛柱浓度变化的因素包括自然和人为因素,自然因素中,甲醛柱浓度受地形影响显著,与风向、气温均呈现显著正相关;人为因素中,甲醛柱浓度与人口密度、地区生产总值、工业废气排放量及建筑房屋竣工面积均表现出正相关关系,与工业废气排放量的相关度最高.大气中甲醛分子与气溶胶粒子二者间呈显著正相关关系,这进一步说明甲醛浓度受到了诸多因素的综合影响,但气溶胶粒子、气温及工业废气的排放是主导因素.  相似文献   

8.
利用臭氧监测仪(OMI)卫星反演数据,对2005~2018年新疆地区大气臭氧柱浓度数据进行提取及分析,探讨其时空分布格局及影响因素.结果表明:在时间变化上,2005~2018年,新疆地区大气臭氧柱浓度整体呈现逐渐上升趋势.在空间分布上,臭氧柱浓度自北向南逐渐降低,高值区集中分布在阿尔泰、塔城北部以及昌吉北部等区域;低值区集中于和田、巴音郭楞蒙古自治州和喀什的南部大部分地区.在季节变化上,大体呈现出春夏季高于秋冬季,高值区在春夏季交替出现,冬季略高于秋季,但四季的臭氧柱浓度值呈现逐渐上升的趋势.稳定性分析表明:研究区域臭氧柱浓度整体呈现中部及南北部分散、东西部集聚的分布格局.自然因素中,气候因素、风场以及海拔均呈现显著正相关(P<0.01);通过后向轨迹追踪发现,该区域西北和西部气流是臭氧外来的最主要输送路径,分别占总气流轨迹的78.59%、57.29%.人为因素中,臭氧柱浓度值与地区生产总值、煤炭消耗量、工业废气排放量及机动车保有量均表现出显著的正相关关系(P<0.05).其中,挥发性有机物(VOCs)主要来源于工业源,其次是交通源和居民源.总体来看,臭氧浓度的变化受到了诸多因素的综合影响,但气温、VOCs的排放及吸收性气溶胶是大气臭氧浓度变化的主导因素.  相似文献   

9.
长三角地区吸收性气溶胶时空分布特征   总被引:3,自引:1,他引:2  
利用2008~2017年OMI/Aura OMAERUV L2气溶胶数据集,研究了近10年长三角地区吸收性气溶胶的时空分布特征.结果表明:①在时间分布上,长三角地区气溶胶光学厚度(AOD)与吸收性气溶胶光学厚度(AAOD)的年际变化趋势一致,均为先升后降,于2011年达最高值,分别为0. 702和0. 056.月际变化显示AAOD高值多发生在1、3和6月,11月到次年1月明显增加.②在空间分布上,长三角地区AAOD呈北高南低分布,AOD与AAOD分布相似,AAOD 0. 05的高值区主要集中在安徽北部、江苏北部以及南京、杭州和金华等地区. AAOD与AOD季节空间分布均为春冬高,秋季较低,但二者不同的是,夏季AOD很大,AAOD却很小.长三角地区AAOD和AOD的年均空间分布与黑碳贡献量一致.  相似文献   

10.
汾渭平原吸收性气溶胶时空演化及潜在源区分析   总被引:1,自引:1,他引:0  
在绿色发展理念的带动下,全国多地的空气质量逐渐改善,但汾渭平原大气污染程度逐年走高,颗粒物污染尤为严重.利用OMI/Aura OMAERUV L2气溶胶数据集和PM2.5站点数据,采用空间自相关分析及后向轨迹模型等方法,探索2005~2019年汾渭平原吸收性气溶胶的时空演化过程,揭示其高值极主导类型以及污染物传输路径和潜在源区.结果表明:①2005~2019年汾渭平原吸收性气溶胶指数(absorbing aerosol index,AAI)年均值波动上升,2006、2013和2017年为汾渭平原AAI高值转折点,年均值均大于0.63;西安和临汾AAI空间稳定性较差为高高聚集极点,在15年间高高聚集区域面积增长15.3%,空间分布更加集中,形成由西安和临汾两极相连的条带状分布区域,占区域总面积的24.2%;低低聚集区域面积锐减6.2%,转变为无特征区域.②汾渭平原AAI冬季数值最高、覆盖区域最广,在临汾极和西安极突破0.8,研究区AAI大于0.6的区域占比91.5%,其次为春季(AAI>0.4)、秋季(AAI>0.3),夏季全境低值.汾渭平原AAI高值受大气扩散条件、气温和降水量变化影响显著.③利用后向轨迹和潜在源贡献模型得出西安极和临汾极污染物的远距离输送气团来自西北方向,近距离输送气团来自偏东和偏南方向,结合源区下垫面类型确定两个远距离沙尘传输源区(西北风源、北风源)、两个碳质源区(东风源和南风源)和一个沙尘和碳质共同作用源区(黄土高原源).其中西北风源、黄土高原源和南风源对西安极影响显著,东风源和黄土高原源对临汾极影响显著,临汾极虽受一定程度西北风源和北风源沙尘影响,但影响较小,结合CO空间分布和其与AAI相关性系数的空间分布得出,临汾极吸收性气溶胶为碳质主导,西安极为沙尘和碳质共同作用.  相似文献   

11.
吕倩 《中国环境科学》2018,38(10):3689-3697
以空间相关性和空间异质性为基础,构建SLM-STIRPAT、SEM-STIRPAT和GWR-STIRPAT模型,对京津冀地区汽车运输碳排放进行测算和影响因素分析.结果表明:京津冀地区汽车运输碳排放存在显著空间相关性和空间异质性.人口对汽车运输碳排放呈正向影响;人均GDP对货运碳排放和总量碳排放呈正向影响,对客运碳排放呈负向影响,城镇化水平对汽车运输碳排放呈负向影响.第三产业增加值对客运碳排放和总量碳排放呈正向影响,对货运碳排放呈负向影响,人口对张家口市汽车运输碳排放影响最为显著;人均GDP对秦皇岛市和沧州市的汽车运输碳排放影响最为显著;城镇化水平对秦皇岛市的汽车运输碳排放影响最为显著;第三产业增加值对秦皇岛市的汽车运输碳排放影响最为显著.  相似文献   

12.
为探究北方山区城市大气细颗粒物污染特征,应用气象模式WRF耦合空气质量模式CMAQ对本溪市2016年PM2.5空间分布特征、化学组分特征及主要污染源贡献情况进行分析.本溪市SO2、NOx、TSP的工业排放量分别达到5.2×104、4.1×104、16.1×104 t.结果表明,模拟值与监测值变化趋势基本一致,模拟效果较好. 1月ρ(PM2.5)明显高于7月,空间分布均呈现"西高东低"态势,高值区出现在人口稠密的市区附近. 1月ρ(PM2.5)本地源贡献率表现为钢铁(35.7%)>供暖(12.5%)>居民(7.5%)>移动(5.2%)>秸秆(2.0%)>电力(0.4%);7月为钢铁(48.6%)>移动(9.2%)>建材(3.5%)>居民(2.8%)>电力(1.5%).受气候、地貌及大气污染物排放特征影响,1月区域传输特征明显,外来源贡献为24%,高于7月的14%.另外,1月和7月本溪市PM2.5组分中二次粒子(SO42-、NO3-、NH4+)占比分别为29%和32%,碳组分(OC、EC)占比分别为43%和37%,碳气溶胶污染严重.研究显示,本溪市大气细颗粒物污染具有明显的季节性变化特征,1月部分区域浓度超标主要是由于以钢铁行业为主的工业排放造成,加之本溪市1月以西北风为主且风力较大,市区位于西部低海拔地区,来自中部城市群的污染物在向东南方向传输过程中受到高海拔山区阻隔,从而形成污染物积聚效应.   相似文献   

13.
利用2015~2019年山东省日照市PM2.5质量浓度和气象要素的小时数据,对日照市PM2.5季节污染特征和日照市海陆风特征进行了分析,并基于HYSPLIT模式计算了5年逐日02:00、08:00、14:00和20:00(BTC)的48h后向轨迹,不仅通过轨迹聚类分析和潜在源区分析探讨了日照市不同季节PM2.5主要传输路径和其轨迹污染特征及其潜在源区分布和贡献,也分析了海陆风对日照市污染物的影响.结果表明:日照市PM2.5呈现冬季最高、夏季最低的分布特征,监测站点颗粒物浓度在偏西北风影响下较高.日照市不同季节主要输送路径存在差异:春季主要受到偏东和偏北方向气流影响;夏季在副热带高压影响下主要受到来自海上的较为清洁的偏东气流影响;秋季主要受到西北和偏东气流影响;冬季主要受西北和偏北气流影响.整体而言,不同季节受偏西至偏南气流影响时,日照市对应的PM2.5浓度较高.日照市海陆风春秋季多,夏冬季少;在海陆风影响下,日照市PM2.5染和臭氧污染呈现不同的分布特征,且在不同PM2.5污染等级下,PM2.5浓度日变化特征也与其在非海陆风日的日变化有所差异.污染潜在源区分析结果表明,日照市最主要的潜在源区位于山东省临沂市、潍坊市、青岛市和江苏省连云港市.  相似文献   

14.
闽三角地区碳排放时空差异及影响因素研究   总被引:1,自引:0,他引:1  
以闽三角地区为研究对象,以2005~2017年为研究期,构建城市尺度的碳排放清单,应用对数平均迪氏指数分解方法从时间维度的纵向比较和典型年份城市横向比较两个维度开展了驱动因素的分解分析及评价,探讨了闽三角碳排放变化影响因素的时空差异.结果显示:研究期内闽三角CO2排放增长较快,从2005年的74.08Mt增加到2017年169.48Mt,增幅为128.75%.其中,泉州贡献最大,占比为67.93%.碳排放变化趋势分析来看,产业结构和经济增长为导致闽三角地区碳排放量增长的主要因素,累计贡献度分别为30.38%和12.21%,能源结构为抑制碳排放的重要影响因素,累计贡献度为-45.76%.时空差异上看,能源结构效应在研究期内均表现为抑制效应,最大贡献率为52.95%;而产业结构效应均表现为促进效应,最大贡献率为33.85%.在研究期内,漳州市碳减排力度最大,最大净减排148.27Mt.而泉州市经济增长和产业结构效应贡献率较大,未来仍具有较大的减排空间.厦门市经济增长和产业结构效应贡献率均低于参考值,且在研究期内变动幅度较小,碳减排压力较低.研究结果深化了闽三角地区碳排放的时空格局及影响因素的科学认识,为闽三角地区及相似城市群的减排治理提供了有益借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号