首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为提高厌氧污泥的发酵产氢能力,采用间歇培养方式考察了氧化还原介体(ROMs)对厌氧污泥发酵葡萄糖产氢效能的影响,并通过川umina MiSeq测序揭示了ROMs对微生物群落的影响.结果 表明,在发酵液体积为100mL及葡萄糖初始浓度500mg/L条件下,对照的累计产氢量和最大产氢速率(Rmax)分别为11.0mL和0....  相似文献   

2.
中温和高温厌氧生物产氢反应器连续运行的研究   总被引:4,自引:2,他引:2  
采用2个厌氧生物产氢反应器分别在中温(37℃)和高温(55℃)下连续运行.以河底沉积物接种,葡萄糖为基质,在CSTR中成功实现了连续中温厌氧产氢,最高产氢量达8.6L/(L·d),基质产氢摩尔比(H2/葡萄糖)为1.98.以厌氧产甲烷颗粒污泥接种,蔗糖为基质,在UASB反应器中成功实现了连续高温厌氧产氢过程,最高产氢量达6.8L/(L·d),基质产氢摩尔比(H2/蔗糖)为3.6.在高温UASB反应器中培养获得了灰白色的产氢颗粒污泥,平均粒径为0.8~1.2mm,沉速为30~40m/h,电镜观察发现其表层生长大量杆状细菌.对2种产氢污泥的总DNA进行提取和纯化,通过PCR扩增和DGGE分析,发现高温和中温厌氧产氢污泥中的大部分真细菌种类相同,但各自的优势菌种明显不同.  相似文献   

3.
污泥厌氧发酵产氢的影响因素   总被引:12,自引:1,他引:11  
蔡木林  刘俊新 《环境科学》2005,26(2):98-101
污水生物处理过程中产生大量剩余污泥, 通常采用厌氧发酵处理并获取甲烷气体. 产氢产酸是污泥厌氧消化过程中的一个中间阶段. 本研究考察了原污泥和经碱处理的污泥在不同初始pH(3.0~12.5)条件下的产氢效果, 以及污泥性质和污泥浓度等对产氢效果的影响. 结果表明, 当初始pH为11.0时污泥发酵的产氢率达到最大值.采用原污泥发酵产氢时, 在初始pH为11.0的条件下发酵产氢获得的最大产氢率为8.1 mL/g, 而经碱处理的污泥在同样初始pH的条件下发酵产氢可将其产氢率提高一倍左右, 达到16.9 mL/g. 污泥经碱处理后厌氧发酵4d无甲烷产生, 且可有效地降低氢气消耗的速率. 另外, 污泥的VSS/SS值过低时会大大降低污泥的产氢率, 而污泥浓度对产氢率无明显影响.  相似文献   

4.
不同底物种类对厌氧发酵产氢的影响   总被引:1,自引:1,他引:0  
在批式培养试验中以人工配置的废水为原料,以厌氧消化污泥作为天然产氢菌源,通过厌氧生物发酵制备生物氢气,研究了不同底物葡萄糖、蔗糖、麦芽糖、木糖、乳糖对产氢能力的影响,以及生物制氢发酵过程中液相组成的变化,并对产氢动力学和细菌生长动力学进行了分析.结果表明,5种底物中最佳的底物是葡萄糖,氢气含量、累积产氢量和氢气产量最高可达到49.52%、67.21 L/mol、3.23 mol/mol.发酵产氢代谢产物以丁酸和乙酸为主,乙酸的含量占到26.76%~40.49%,丁酸的含量占到37.60%-58.07%.并含有部分丙酸和乙醇,属于丁酸型发酵.丁酸/乙酸比值可作为衡量氢气产生效率的一个指标,比值越大产氢量越高.实验中氧化还原电位均在-300 mV以下,以厌氧为主.Gompertz模型能够很好地拟合其产氢过程和产氢菌生长过程.  相似文献   

5.
利用养殖场废水厌氧发酵生物制氢技术研究   总被引:3,自引:0,他引:3  
在批式厌氧反应器中,以厌氧消化污泥作为天然产氢菌源,通过养殖场废水的厌氧发酵生产氢气,考察了厌氧污泥和碳氮营养物质对养殖场废水产氢的影响,并对液相产物的分布、产氢动力学进行了分析.试验分为4个处理.结果表明,加入营养物质接种污泥的养殖场废水氢气含量、累积产氢量和单位COD氢气产量最高可达到50.65%、334.80mL和287.10mL/g.而未接种污泥的原始养殖场废水累积产氢量和单位COD氢气产量仅为59.24mL和67.05mL/g.污泥和碳氮营养物质对产氢能力均有显著地促进作用,加入碳氮源后微生物群促进了原养殖废水有机物的氢的形成.液相末端产物中,乙酸、丁酸占总挥发酸的61%~86%,产氢过程属于典型的乙酸-丁酸型发酵.总挥发性酸含量的提高,其产氢能力也增大. Gompertz模型能够很好地拟合其产氢过程.  相似文献   

6.
王博  王亮  杨阳  刘福东 《中国环境科学》2013,33(12):2201-2207
为降低能耗,提高辐照技术的经济性,探讨了在0~9.5kGy范围内,γ辐照剂量对生活污水处理厂二沉池剩余污泥中耗氢菌的抑制效果和对发酵产氢的影响,建立了描述发酵产氢过程及辐照影响的动力学模型.结果表明,γ辐照剂量从0增加至9.5kGy时,污泥溶解率从0增加至4%,上清液中可检测出一定的蛋白质和多糖等物质,其中蛋白质中的氮素占溶出总氮素的90%,表明较低剂量辐照即对污泥菌体造成较明显的破解,这可在一定程度上抑制无法形成芽孢的耗氢菌活性;与之相对应的是污泥发酵产氢能力的明显提升,以葡萄糖为底物(1.0g/L),在35℃和初始pH值为7.0时,当辐射剂量仅为0.5kGy时,累积产氢量即比未辐照时有70%的提升,进一步增加辐照剂量至5kGy,累计产氢量和产氢得率均继续增长且达到最大值,分别为240mL/g葡萄糖和1.93mLH2/mol葡萄糖(发酵液的污泥量达2.0g VSS/L);此后,污泥发酵产氢能力随辐射剂量的增加而降低.修正的Logistic模型能很好地描述本研究中累积产氢量随时间的变化规律,而修正的Han-Levenspiel模型能很好地描述辐照剂量对平均产氢速率的影响.  相似文献   

7.
采用批式发酵法对厌氧产氢菌株Bacteria.P利用葡萄糖发酵,在底物浓度、初始pH值、接种比例等不同培养条件下的产氢能力进行了研究。结果表明:专性厌氧菌P是一种高效产氢的菌株,在葡萄糖质量浓度为10 g/L、初始pH为6.0、接种比例为1∶20时,发酵气体总产量和细胞干重达到最大值,分别为485 mL和0.836 g/L。  相似文献   

8.
低碳背景下,剩余污泥的资源化利用是实现污水处理厂有机固废减污降碳协同增效的重要举措。厌氧共发酵技术则是实现污泥资源化利用的最有效手段之一。通过剩余污泥与其他有机固废厌氧共发酵产生的高值产物(如挥发性脂肪酸等)可广泛应用于工业产品生产中,在实现污泥资源化利用的同时,降低了碳排放。然而,现有研究主要聚焦在剩余污泥厌氧共发酵产酸效能的探讨,在共发酵产酸的机理及优化调控手段等方面缺乏系统性的总结与分析。因此,基于以往研究,系统分析了剩余污泥与餐厨垃圾、农业废弃物等共发酵产酸效能,讨论了C/N值、pH值、温度以及污泥停留时间等工艺参数对剩余污泥厌氧共发酵过程的影响,提出了剩余污泥厌氧共发酵产酸的下游应用,并从能源与经济角度对剩余污泥厌氧共发酵技术进行了展望,以期为剩余污泥厌氧共发酵技术的低碳化应用提供参考。  相似文献   

9.
昌盛  刘枫 《环境科学研究》2016,29(9):1370-1377
为寻求厌氧产酸发酵反应器的适宜控制参数和微生物学机制,以ACR(厌氧接触式发酵制氢反应器)为试验平台,通过分阶段调控反应器的pH,考察不同pH下ACR系统的产酸发酵类型和产氢性能,并采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术对微生物群落结构进行了解析.以糖蜜废水为基质,以城市污水厂剩余污泥为种泥,在污泥接种量(以MLVSS计)为3.58 g/L、进水ρ(CODCr)为5 000 mg/L、HRT为12 h条件下,分别考察了系统在pH为6.0~6.5、5.5~6.0、5.0~5.5、4.5~5.0条件下的运行特性.结果表明,在pH为4.5~5.0时,系统中以Ethanoligenens harbinense YUAN-3为代表的产氢菌群占优,呈现典型的乙醇型发酵特征,活性污泥表现出的产氢性能最佳,其氢气转化率和污泥的比产氢速率分别为1.9 mol/mol和7.8 mmol/(g·d).在pH为5.5~6.5、5.0~5.5的条件下,Clostridium tyrobutyricum strain A1-3、Propionibacterium sp.B2M2分别成为优势菌群,系统分别呈现出丁酸型发酵、混合酸发酵类型.研究显示,随着pH的改变,系统内的产酸发酵菌群随之发生更迭,在不同pH控制水平下形成不同的顶级微生物群落结构,进而使得系统呈现出不同发酵类型和产氢性能.   相似文献   

10.
为寻求适宜的污泥热处理方法富集产氢菌群,利用摇瓶发酵试验,考察了城市污水处理厂活性污泥在65℃下经不同时间的热处理后,其利用葡萄糖发酵产氢的特性。结果表明,在初始葡萄糖浓度为10 gL,接种量为1.6 gL(以MLVSS计),p H为7.0条件下,35℃培养64 h,经65℃热处理15和30 min的种泥发酵系统表现出较好的发酵产氢性能,其氢气转化率分别为1.06和1.09 molmol(以葡萄糖计),比产氢率分别为8.2和8.4 mmolg(以MLVSS计)。不同热处理时间下种泥中的微生物种群存在差异,各发酵体系形成了具有不同产酸发酵产氢功能的顶级群落,其中经15~75 min热处理的种泥发酵体系表现为丁酸型发酵特征;而经90~120 min热处理的种泥发酵体系则呈现混合酸发酵特征。  相似文献   

11.
苏润华  丁丽丽  任洪强 《环境科学》2018,39(7):3286-3296
重点比较了纳米零价铁(NZVI)和微米级铁(ZVI)短期暴露条件下,厌氧产甲烷过程中污泥产甲烷活性、污泥生理生化特征、细胞膜磷脂组成和微生物群落结构的变化.结果表明,NZVI组中累积产甲烷量随着NZVI投加浓度的增加降低.5 000mg·L~(-1)ZVI组累积产甲烷量未受影响.5 d时NZVI(100~5 000 mg·L~(-1))组铁离子浓度是空白组的1.6~7.4倍,5 000mg·L~(-1)ZVI组铁离子浓度略高于空白组.5 000 mg·L~(-1)NZVI组胞外聚合物总量大幅下降为空白组的21.1%,而活菌比仍可保持在空白组的79.7%.辅酶F420和辅酶M含量在5 000 mg·L~(-1)NZVI组中为空白组的40.2%和61.6%,但100 mg·L~(-1)NZVI组和5 000 mg·L~(-1)ZVI组中辅酶F420含量升高为空白组的1.3倍.不同实验组污泥支链脂肪酸和不饱和脂肪酸的总含量为:ZVI-5 000(21.18%)空白组(19.37%)NZVI-1000(16.69%)NZVI-5000(15.94%)NZVI-100(12.08%).NZVI可使环境中铁离子浓度升高和细胞膜流动性下降,降低细胞活性和产甲烷关键辅酶活性,从而对产甲烷过程造成抑制;主成分分析和冗余分析表明,厌氧系统中微生物群落组成可受到NZVI的影响发生较大变化,Nakamurella、Bacillus、Trichococcus和Petrimonas对NZVI耐受性高.  相似文献   

12.
低DO下AGS-SBR处理低COD/N生活污水长期运行特征及种群分析   总被引:3,自引:1,他引:2  
本研究在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),构成AGS-SBR系统,研究其在低DO(0.5~1.0mg·L~(-1))条件下,处理低COD/N比(4.0)生活污水同步脱氮除磷的长期稳定运行特性,并解析反应器的主要菌群构成.结果表明,在反应器运行的180d里,AGS-SBR系统表现出了良好且稳定的除污能力,反应器对水体中COD、NH~+_4-N、TN和TP平均去除率分别达到87.17%、95.21%、77.05%和91.11%.好氧颗粒污泥沉降性能一直很好,污泥始终保持着完整的颗粒外观和密实紧凑的结构,并没有出现明显的颗粒污泥解体的现象.同时,高通量测序结果表明,变形菌门、厚壁菌门、绿菌门、绿弯菌门和拟杆菌门为SBR-AGS反应器中主要优势菌群.Denitratisoma、Planctomycetaceae、Thauera、Comamonas、Nitrosomonas和Nitrospira是反应器中与脱氮有关菌群;Clostridium和Anaerolinea是除磷相关细菌.  相似文献   

13.
有机负荷和温度波动对厌氧菌群及酶活影响   总被引:1,自引:0,他引:1  
于钦  冯磊  甄箫斐 《环境科学学报》2020,40(12):4358-4367
基于太阳能辅热厌氧消化反应器进行餐厨垃圾半连续发酵试验,探究了温度波动和有机负荷调控(OLR=2.0、4.0、6.0、7.0 kg·m-3·d-1)对甲烷产量、酶活性变化和微生物群落结构的影响.结果表明,反应器可以在OLR为2.0 kg·m-3·d-1下稳定运行并在6.0 kg·m-3·d-1时实现最佳甲烷生产效率,虽然太阳能组比电能组减少了4倍能耗,但热辐射不稳定导致太阳能组发酵温度波动,甲烷平均产量比电能组减少21%.此外,蛋白酶在温度波动环境下表现出较高活性,但脂肪酶和淀粉酶活性却受到抑制.高通测序结果表明,低OLR阶段乙酸型产甲烷菌Methanosaeta活性较强,随着OLR递增氢营养型产甲烷菌MethanoregulaMethanospirillum相对丰度逐渐提高,而试验全过程中水解细菌Firmicutes相对丰度维持在62%~95%,占据主导地位.  相似文献   

14.
针对城镇污水中碳源不足、C/N比低导致脱氮性能不佳的问题,建立了A2/O中试装置,通过调整系统缺氧/好氧分区比例及好氧区溶解氧水平,探究亚硝氮积累率及氮类污染物去除情况.结果表明,在DO为2. 0~2. 5 mg·L~(-1)条件下,改变缺氧/好氧分区比例对系统的影响较小,难以实现短程硝化;当控制DO为0. 5~0. 8 mg·L~(-1)、V_缺∶V_好=1∶1时为系统最优工况,此时系统好氧区末端亚硝氮积累率稳定在62%以上,出水总氮降至9. 0 mg·L~(-1),能够实现深度脱氮的目标.分析硝化菌表观活性可知,最优工况下SAOR与SNOR分别(以N/VSS计)为0. 14 g·(g·d)~(-1)和0. 04 g·(g·d)~(-1),二者差值较试验其他阶段更为明显,即NOB活性受到更高程度抑制是提高亚硝氮积累率的直接原因. Illumina MiSeq测序结果表明,该阶段NOB数量显著低于其他阶段.通过间歇OUR法分析缺氧区进出口碳源组成情况,结果表明最优工况下系统通过短程硝化节约碳源27. 3%,可生化性COD在缺氧区消耗63. 6%,远高于其他阶段,是低C/N比城市污水实现深度脱氮的碳源有力保障.  相似文献   

15.
采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素废水二级生化处理出水进行深度处理,考察了组合工艺对废水污染物的去除效果,通过三维荧光光谱结合平行因子法(EEMs-PARAFAC)分析了废水中有机物的荧光变化特征,并利用Illumina MiSeq高通量测序技术对BAF中微生物菌群结构的变化进行研究.结果表明,在最佳运行条件下,抗生素废水COD平均值由232 mg·L-1降至46 mg·L-1,NH4+-N平均浓度由12 mg·L-1降至4.1 mg·L-1,出水水质可稳定达到《发酵类制药工业水污染物排放标准》(GB21903-2008).EEMs-PARAFAC从废水中解析出3类荧光组分,主要可归为腐殖酸(胡敏酸)、富里酸及其混合物,经组合工艺处理后荧光强度大幅下降甚至消失.Illumina MiSeq测序显示,污泥经抗生素废水驯化后微生物丰富度和均匀度明显降低,Proteobacteria(变形杆菌门)、Chloroflexi(绿屈挠菌门)和Firmicutes(厚壁菌门)是优势菌门,其中,Thiothrix(发硫菌属)、ThermomonasPseudoxanthomonas(假黄单胞菌属)和JG30_KF_CM45是降解抗生素类污染物的主要菌属.  相似文献   

16.
Fe和Fe2+对混合细菌产氢发酵的影响   总被引:21,自引:6,他引:15  
丁杰  任南琪  刘敏  丁兰 《环境科学》2004,25(4):48-53
在研究Fe粉剂量和Fe2+浓度对混合细菌产氢发酵的影响基础上,确定Fe和Fe2+促进混合细菌产氢能力的最佳阈值,并对乙醇型发酵菌群在不同Fe粉和Fe2+浓度下的产氢量和最大比产氢速率进行考察和对比.结果表明,Fe粉和Fe2+对乙醇型发酵菌群的产氢能力均有明显的促进作用.以葡萄糖为底物,投加Fe2+试验中,Fe2+浓度200mg/L获得最大产氢量143.7mL/g,较对照组提高32%;Fe2+浓度50mg/L获得单位VSS最大比产氢速率21.2 mL/(h·g),较对照组提高33%.投加单质Fe试验中,Fe粉剂量1000mg/L获得最大产氢量156.1mL/g,较对照组提高44%;Fe粉剂量500mg/L获得单位VSS最大比产氢速率23.5mL/(h·g),较对照组分别提高47%.单质Fe浓度高于50mg/L时,对发酵菌群产氢的促进作用要优于同浓度下的Fe2+.同时对混合细菌中铁的全量和形态分布进行了考察.  相似文献   

17.
盐度条件下ANAMMOX-EGSB反应器颗粒污泥微生物群落   总被引:3,自引:2,他引:1  
王晗  李瀚翔  陈猷鹏  郭劲松  晏鹏  方芳 《环境科学》2019,40(4):1906-1913
采用高通量测序技术探究了0、15和30 g·L-1盐度条件下稳定运行ANAMMOX-EGSB反应器中颗粒污泥的微生物群落变化.结果发现,进水盐度提升至15 g·L-1及30 g·L-1后,反应器脱氮性能呈现小幅下降,随运行时间延长脱氮性能均可恢复.反应器性能稳定后,3种盐度条件下厌氧氨氧化菌的丰度依次为10.33%、20.90%和35.87%,其中Candidatus Kuenenia属为优势属.浮霉状菌门、变形菌门、绿弯菌门丰度占总体比例较高且累计丰度超过了80%,为反应器的优势菌门.盐度条件下,浮霉状菌门丰度增加,变形菌门丰度降低,绿弯菌门丰度相对稳定.电镜扫描显示盐度条件下颗粒污泥表面有大量丝状菌和胞外聚合物.盐度条件下反硝化菌丰度提高,增强了反硝化协同脱氮,绿弯菌门和拟杆菌门微生物丰度的提高有利于维持颗粒污泥结构稳定,好氧微生物及反硝化菌的存在也有利于维持反应器内部厌氧水平.这些结果表明,厌氧氨氧化菌经驯化可适应盐度,盐度条件下伴生菌对厌氧氨氧化菌功能的发挥提供了支撑.  相似文献   

18.
采用乙酸对厌氧污泥进行逐步驯化,以富集乙酸营养型产甲烷菌群,解决厌氧发酵过程中的酸抑制问题.对驯化前后污泥中的微生物群落结构及其在高酸浓度和低p H值条件下的发酵特性进行了研究.结果表明:驯化后污泥中乙酸营养型产甲烷菌中的甲烷八叠球菌属(Methanosarcina)得到了明显富集,其相对丰度由原始的4.2%提高到58.1%,成为耐酸污泥中的主导优势古菌群;氢营养型产甲烷菌属的丰度则都有不同程度的下降.污泥中产甲烷菌群由氢营养型为主导转为乙酸营养型和氢营养型共同主导.驯化前后污泥中细菌的优势菌门均为主要降解纤维素和半纤维素的厚壁菌门(Firmicutes)和降解蛋白质的拟杆菌门(Bacteroidetes),其中驯化后Firmicutes的丰度由48.8%提高到61.7%,而Bacteroidetes的丰度则由30.1%降低至16.9%.驯化后的污泥对高VFA浓度和低pH值的耐受性均有较大程度的提高,其在VFA浓度为7500 mg·L~(-1)及pH 6.0条件下仍可以快速产气.  相似文献   

19.
处理垃圾渗滤液的SBR中微生物种群与污泥比阻   总被引:4,自引:1,他引:3  
为了研究活性污泥法处理垃圾渗滤液时污泥过滤性能与微生物种群的关系,采用两组运行参数相同的SBR反应器对某垃圾焚烧发电厂的垃圾渗滤液进行处理,一组置于太阳光照下(SBR1),另一组置于室内黑暗处(SBR2).在运行过程中发现SBR1在第30~50 d出现了轮虫等捕食性后生动物,污泥比阻在第35 d出现下降;而SBR2在第40 d发生了丝状膨胀,污泥比阻一直上升.为了研究两组反应器中微生物种群的差异,取两反应器运行至第50 d的活性污泥进行高通量测序发现:SBR1真菌中Rozellomycota为优势菌门,相对丰度为83.71%.SBR2真菌中Basidiomycota和Trichosporon为优势菌门和菌属,相对丰度分别为99.84%和99.78%.SBR1中细菌丰度较SBR2高,Thauera是SBR1中主要细菌菌属,其相对丰度为39.35%;Planktosalinus、Thauera和Ottowia为SBR2中优势细菌菌属,其相对丰度分别为16.84%、16.23%和12.55%.SBR2中主要真菌和细菌菌属类型和丰度均与SBR1存在差异,可见活性污泥中的微生物种群结构是影响污泥过滤性能的主要因素,同时太阳光照会影响活性污泥反应器中的微生物种群结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号