首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
微生物电解池(microbial electrolysis cell,MEC)可在微生物的作用下利用电化学技术将废水中的有机物化学能转化为氢能。由于其属于低能耗设备,微生物燃料电池(microbial fuel cell,MFC)所产生的电能就可以为其运行提供电源。因此,为探索以氢气的形式储存MFC所产生电能的可能性,该试验首先构建了双室MEC,研究其运行条件和效能的影响因素;随后将MFC和MEC联合运行,利用MFC为MEC供电,并讨论联合运行系统内MFC与MEC的相互影响。研究发现MEC运行必须同时具有电化学功能菌、有机物和外加适宜电压3个必要条件;间歇运行试验发现阳极进水pH值为7.0时,MEC的氢气产量最高;而连续运行可使MEC阳极液的pH值维持在中性,阴极持续稳定产气,MEC高效稳定运行的最佳COD浓度约为600 mg/L。在MFC-MEC联合运行试验中,MFC输出电压高于280 mV时,电路中即有明显的电流出现,且随着阳极有机底物的消耗呈现出一定的变化规律,表明采用MFC为MEC运行供电是可行的。  相似文献   

2.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:6,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

3.
基于微生物燃料电池技术的多元生物质生物产电研究进展   总被引:6,自引:3,他引:3  
微生物燃料电池(microbial fuel cell,MFC)是一种使用微生物作为催化剂,直接将生物质能转化为电能的装置,为生物质的利用提供了新的途径.底物类型和底物浓度对于MFC的性能至关重要.使用小分子酸、醇或葡萄糖等简单有机物为底物时,MFC功率输出较高.但当底物为结构复杂的有机物时,为了提高MFC功率输出和底物降解效率,可以采用物理、化学手段对其进行预处理、采用天然菌群进行生物预降解或者添加简单有机物进行底物强化.基于多元生物质MFC技术未来将应用于污水中生物质能回收、偏远地区供电和生物传感器等方面.  相似文献   

4.
氧四环素的微生物燃料电池处理及微生物群落   总被引:1,自引:1,他引:0  
严伟富  肖勇  王淑华  丁蕊  赵峰 《环境科学》2018,39(3):1379-1385
氧四环素(OTC)作为一种广谱性抗生素而被大量使用,其滥用不仅直接破坏生态系统,更容易引起微生物耐药性和抗性基因污染等问题.本研究利用微生物燃料电池(MFC)处理OTC,研究OTC在MFC不同运行时期的去除率变化情况,发现在运行150 d后,MFC对10 mg·L-1OTC的去除率在132 h达到99.0%.利用高通量测序技术分析并比较了原始接种猪粪与运行150 d后MFC阳极生物膜的微生物群落结构,发现厚壁菌门(Firmicutes)处于优势地位,但相比于原始接种猪粪,MFC生物膜上的变形菌门(Proteobacteria)的丰度从2.84%提高至8.92%~22.75%,此外,真细菌属(Eubacterium)的比例从几乎为0.00%显著提高至20.49%~49.00%.根据现有研究报道,Eubacterium spp.对多种氧杂环芳香族化合物具有一定的生物降解能力,本研究表明Eubacterium spp.可能是一类具有较强OTC降解能力的功能微生物.  相似文献   

5.
微生物燃料电池的应用研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
微生物燃料电池(microbial fuel cell,MFC)可用的原料广泛,其广泛应用为可再生能源的开发和难降解废物的处理提供了一条新途径。介绍了MFC的原理,并结合其发展趋势阐述了MFC影响因素,具体包括电池构型、底物种类、电极材料和阳极微生物。此外,综述了近些年的MFC应用进展,具体涵盖污水处理、MFC与其他技术耦合以及MFC生物传感器等领域。最后展望了MFC发展的主要方向,包括对传统交换膜进行改造,或寻求膜替代材料;开发具有低电阻、抗腐蚀、高孔隙率以及高比表面积的新型阳极材料;加强MFC与其他技术耦合以及改善MFC传感器响应时间和灵敏度等措施。可为今后MFC技术的研究和应用提供参考。  相似文献   

6.
微生物燃料电池处理苯酚废水运行条件研究   总被引:8,自引:1,他引:7  
以传统厌氧消化(conventional anaerobic digestion,CAD)作对照,研究不同温度、底物浓度、盐桥管径以及有无接种微生物对微生物燃料电池(microbial fuel cell,MFC)处理苯酚废水性能的影响.实验结果表明,MFC技术可以在获得电能的同时,强化有机废水的生物处理过程,MFC能够在较低温度(15℃)下运行.当苯酚初始浓度为0.15g·L-1,随着温度(15℃、25℃、35℃)的增加,苯酚的降解效率和MFC的产电性能也随着提高;MFC具有耐有机负荷冲击能力,即使在高负荷苯酚初始浓度3.5g·L-1条件下,去除率达60%;盐桥孔径并不与苯酚去除效率、电压、功率密度成正比关系.MFC在适合的管径条件下可以高效去除苯酚的同时,能有较高的产电效率;MFC的阳极反应需要微生物的催化.  相似文献   

7.
本文介绍了生物电化学系统(BES)对抗生素的去除性能,总结了反应过程对微生物电解电池(MEC)性能和微生物燃料电池(MFCs)产电的影响,分析了BES耦合系统的处理效率,探讨了耐药细菌(ARB)和抗生素耐药性基因(ARGs)的归趋。分析认为:在MEC中,外加电压的大小影响抗生素降解效率,阴极提供电子并还原抗生素;抗生素的有效去除主要依靠BES中的共代谢降解或阳极直接氧化,抗生素可以充当唯一电子供体并且作为MFC发电的唯一碳源;在没有外接电源的情况下,一些耦合系统对抗生素的去除更为节能高效;降解抗生素的过程中,低电流可以促进ARGs通过垂直基因转移(VGT)和水平基因转移(HGT)传播,高电流则有望消除ARB和ARGs。  相似文献   

8.
石墨烯掺杂聚苯胺阳极提高微生物燃料电池性能   总被引:3,自引:0,他引:3  
微生物燃料电池(microbial fuel cell,MFC)技术可分解代谢污染物质并同步输出电能,在环境及能源领域吸引了越来越多的关注.但是,输出功率密度较低、成本较高、底物降解率低等特点限制了其实际应用,其中阳极是主要限制因素之一.本研究选取具有优异导电性、大比表面积的石墨烯和生物相容性较好的聚苯胺(polyaniline,PANI),并优化二者比例关系,制备得到石墨烯掺杂PANI复合材料.将复合材料涂覆在玻碳电极表面分析电化学性能,循环伏安(cyclic voltammetry,CV)和线性伏安扫描(linear sweep voltammetry,LSV)测试结果均显示石墨烯含量占比20%的复合电极(20%石墨烯)电化学性能最好.将复合材料修饰在碳布表面作为MFC阳极时以石墨烯含量占比5%的复合电极(5%石墨烯)生物电化学性能最佳,LSV得到最大输出功率密度为(831±45)mW·m-2,分别是20%石墨烯、1%石墨烯、石墨烯、PANI、碳布阳极的1.2、1.3、1.3、1.5、1.8倍.最大输出电压、开路电压、化学需氧量去除率、库仑效率、生物量密度均以5%石墨烯电极最高.电化学阻抗分析表明5%石墨烯电极极化内阻仅为(24±2)Ω,是碳布电极的19.8%.电化学和生物电化学性能并不完全一致,说明电极材料的生物相容性是影响MFC性能的主要因素之一.5%石墨烯阳极充分发挥了石墨烯和聚苯胺的优点,提高了MFC的产电性能.  相似文献   

9.
牛粪混合液微生物燃料电池长期运行稳定性研究   总被引:5,自引:1,他引:4  
焦燕  张国栋  赵庆良 《环境科学》2014,35(5):1981-1987
长期运行稳定性是微生物燃料电池(microbial fuel cells,MFCs)技术的一项重要特征,是其能否走向实际应用的关键.生物阴极MFC利用牛粪产电的长期运行特征的研究表明,该MFC可长期、高效、稳定地产电.在100Ω外电阻下,171 d的运行期内,电池功率密度平均为6.77 W·m-3±2.11 W·m-3.第70 d的电池开路电压、内阻、最高功率密度分别为0.874 V、22.1Ω和14.1 W·m-3.随着运行时间延长,每30 d的总化学需氧量(total chemical oxygen demand,TCOD)去除量不断递减,而库仑效率(Coulomb efficiency,CE)不断递增,在121~150 d,CE可达17.5%±3.3%.阳极微生物群落结构分析表明,Proteobacteria(45%)、Bacteroidetes(22%)、Firmicutes(17%)、Actinobacteria(11%)在阳极生物膜中占有优势地位.Clostridium、Cellulomonas等已被证明具有产电能力或纤维素降解能力的细菌是阳极生物膜中的关键功能种群.  相似文献   

10.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果.  相似文献   

11.
城市河流沉积物微生物量分布和群落结构特征   总被引:7,自引:0,他引:7  
沉积物微生物是河流生态系统物质循环及水体净化的驱动力.为了探讨城市河流不同河段沉积物微生物量分布和群落结构特征及其影响因素,采用PLFAs分析方法和高通量测序技术获得沉积物微生物量和群落结构指标,并利用冗余分析(RDA)和相关性分析等方法探究影响河流沉积物微生物量和群落结构的主要环境因素.结果表明:除上游样点C7外,沉积物细菌优势菌门均为变形菌门,次优势菌门为绿弯菌门,优势菌纲为β-变形菌纲,次优势菌纲为γ-变形菌纲;同一河段内沉积物微生物组成和细菌群落结构相似,而不同河段间沉积物微生物组成和细菌群落结构差异明显;下游沉积物细菌多样性和丰富度(香农指数均值10.20,Chao1指数均值3011.5)显著高于中游(香农指数均值9.50,Chao1指数均值2808.2)和上游(香农指数均值9.38,Chao1指数均值2681.2);沉积物微生物PLFAs总量和各菌群PLFAs含量均表现为中游沉积物中含量较高(PLFAs总量均值412.1 nmol·g~(-1)),而下游(PLFAs总量均值218.6 nmol·g~(-1))和上游(PLFAs总量均值215.1 nmol·g~(-1))沉积物中含量相对较低.分析和讨论结果表明,速效钾、pH、C/P、TC、C/N和铵态氮是影响不同河段沉积物细菌群落结构特征的主要环境因子,TC、TN、C/P和pH是影响沉积物细菌多样性的主要环境因子,而速效钾、C/P、TN、TC和pH是影响不同河段沉积物微生物量分布的主要环境因子.十五里河不同河段的沉积物微生物通过微生物量和群落结构特征反映不同河段环境状况,并发挥着水体净化和河流生态系统健康维持的功能.  相似文献   

12.
王敏  赵阳国  卢珊珊 《环境科学》2014,35(10):3940-3946
为探讨培养过程对微生物的选择性作用及电极活性菌在生物膜中的功能地位,采用亨氏厌氧滚管稀释培养技术,以氧化铁为指征,自微生物燃料电池(microbial fuel cell,MFC)阳极生物膜中分离电极活性微生物,并对纯菌分离过程中微生物群落结构动态特征进行跟踪监测.结果表明,以乳酸、乙酸和甾体药物生产废水为底物的MFC最高电压分别可达0.57、0.60和0.40 V.种泥以及乳酸、乙酸为底物的阳极膜分离出的优势菌种均为变形杆菌,而甾体废水为底物的阳极膜分离出的优势菌包含变形杆菌、厚壁菌和拟杆菌,种类丰富.经过富集培养最终分离获得2株电极活性菌,16S rDNA测序鉴定为路德维希肠杆菌(Enterobacter ludwigii)和弗氏柠檬酸杆菌(Citrobacter freundii).以乳酸为底物,两株纯菌可分别获得0.10V和0.17 V的最大电压.该研究表明,应用氧化铁为指征的厌氧梯度稀释培养技术可分离到电极活性微生物,但由于分离过程的选择作用,微生物群落结构动态变化特征显著.  相似文献   

13.
孙杏  胡凯  雷晨雨  陈卫 《环境工程》2021,39(4):147-155
针对微生物电解池(MEC)处理剩余污泥时水解速率慢、有机质降解率低的问题,采用冻融破解预处理剩余污泥,探讨了冻融对污泥泥质的影响及对后续MEC处理效能的强化作用.结果 表明:冻融处理可以有效促进污泥絮体解散、细胞破裂及有机物溶出,在-18℃冷冻72 h,26℃融解3h后,污泥SCOD增加了2.58倍.以冻融污泥为底物的...  相似文献   

14.
以吲哚为燃料的微生物燃料电池降解和产电特性   总被引:4,自引:1,他引:3       下载免费PDF全文
以铁氰化钾为电子受体,在两极阴阳室内使用碳毛刷纤维为电极材料构建了循环式微生物燃料电池(MFC),研究了以吲哚为单一燃料和吲哚+葡萄糖为混合燃料条件下MFC的产电特性以及对吲哚和COD的去除效果.结果表明,以1000mg/L葡萄糖+250mg/L吲哚为混合燃料时,MFC的最高电压和最大功率密度分别为660mV和51.2W/m3(阳极),MFC运行10h对吲哚和COD的去除率分别为100%和89.5%;分别以250,500mg/L吲哚为单一燃料时,MFC的平均最高电压分别为115,118mV,最大功率密度分别为2.1,2.3W/m3(阳极).在MFC中,250,500mg/L吲哚被完全降解的时间分别为6,30h.MFC能够利用吲哚为燃料,在实现高效降解吲哚的同时对外产生电能,可用于处理含有毒且难降解有机物的焦化工业废水.  相似文献   

15.
文章研究设计了一个无介体的双筒型微生物燃料电池,并利用该电池对猪场模拟废水和实际废水进行处理。文章较为系统地研究了DCMFC的启动特性,并对该过程中COD处理效率和产电能力等各项指标进行了评估与分析。结果表明,DCMFC处理模拟猪场废水和实际废水均能得到较好的效果,COD处理效率分别达77.83%和73.26%,库仑回收率分别达18.89%和21.49%,电池效率分别达39.84%和53.36%,输出功率分别达3.58 mW(143.2 mW/m)2和4.36 mW(174.4 mW/m)2,并获得了30Ω左右的较小内阻值。猪场模拟废水的底物COD去除率和COD浓度随时间变化的规律可以用ExpDec1模型来进行描述,拟合相关系数分别达0.993 28和0.976 56。同样实际猪场废水的底物COD去除率和COD浓度随时间变化的规律也可以用ExpDec1模型来进行描述,拟合相关系数分别达0.996 83和0.997 82。对DCMFC进行极化曲线测试中,该装置可获得最大输出功率3.8 mW(PA=152 mW/m2,I=9.75 mA),拟合开路电压E=704.67 mV,内阻Ri=31.91Ω。。  相似文献   

16.
通过投加硝酸钙为电子受体,促进厌氧环境中有机污染物降解转化的方式已被广泛应用于沉积物的污染修复,然而目前有关硝酸盐对复合污染沉积物中有机污染物的减量特点及其微生物响应的了解极少.本研究通过在实验室模拟条件下添加硝酸盐到河涌沉积物中,采用极性和非极性逐步分离萃取、GC-MS相对含量测定,以及PCR-DGGE分子生态学分析手段相结合,研究硝酸盐对河涌沉积物中有机污染物降解转化和微生物菌群结构特点的影响.结果表明,硝酸钙的投加可有效提高有机物的去除效果.沉积物TOC以及总有机物的去除率比未添加硝酸盐的对照组分别高出47.25%、29.55%.各类有机物的去除效果由高到低依次为含硅有机物、烷烃、多环芳烃、杂环、烯烃类、苯系物、极性物质、邻苯二甲酸酯类、醛酮和烷酸酯类物质.其中含硅有机物、持久性有机污染物多环芳烃、苯系物以及杂环物质的去除率比对照组分别高出46.73%、36.25%、23.19%、35.92%.细菌16S rDNA V3区PCR-DGGE图谱显示,硝酸盐添加前后沉积物中的微生物群落结构存在显著差异.其中10个主要条带中4条归属于变形细菌(Proteobacteria)的δ和γ两个亚群,2条归属于放线菌门(Actinobacteria),1条归属于梭菌纲(Clostridia),1条归属于绿弯菌门(Chloroflexi),1条归属于新发现的细菌门(Caldiserica),1条为未培养微生物.本研究结果将为利用硝酸盐促进厌氧沉积物的污染治理提供科学依据和理论指导.  相似文献   

17.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号