首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clean-up techniques, which were developed for removing cationic heavy metals from contaminated soils, are inappropriate for the metalloid As, which is a common and highly toxic pollutant. Because arsenic is mainly found associated with the hydrous ferric oxides of the soil, a possible mechanism for the mobilisation of this element is the reductive dissolution of Fe(III) oxyhydroxides. In this paper we investigate the possibility to mobilise arsenic, using the Fe(III)-reducing bacterium Desulfuromonas Palmitatis. The initial experiments were carried out using a crystalline ferric arsenate as model compound, i.e. scorodite (FeAsO4.2H2O). D. palmitatis was found able to reduce the trivalent iron of scorodite at a percentage of 80% within 16 days, but arsenic remained in the pentavalent state, and reprecipitated with Fe(II) in the form of low solubility ferrous arsenates. To avoid the precipitation of ferrous arsenates the subsequent experiments with soil were conducted by combining the reducing ability of D. palmitatis with the chelating strength of EDTA (ethylenediamine tetracetic acid), which can form strong aqueous complexes with Fe(II). Approximately 60% of Fe and 75% of As were recovered in the aqueous solution in the presence of EDTA, while in the simple biological treatment no Fe was dissolved and only a 3% of As was mobilised.  相似文献   

2.
Microbial cycling of iron and sulfur in acidic coal mining lake sediments   总被引:1,自引:0,他引:1  
Lakes caused by coal mining processes are characterized by low pH, low nutrient status, and high concentrations of Fe(II) and sulfate due to the oxidation of pyrite in the surrounding mine tailings. Fe(III) produced during Fe(II) oxidation precipitates to the anoxic acidic sediment, where the microbial reduction of Fe(III) is the dominant electron-accepting process for the oxidation of organic matter, apparently mediated by acidophilic Acidiphilium species. Those bacteria can reduce a great variety of Fe(III)-(hydr)oxides and reduce Fe(III) and oxygen simultaneously which might be due to the small differences in the redox potentials under low pH conditions. Due to the absence of sulfide, Fe(II) formed in the upper 6 cm of the sediment diffuses to oxic zones in the water layer where itcan be reoxidized by Acidithiobacillus species. Thus, acidic conditions are stabilized by the cycling of iron which inhibits fermentative and sulfate-reducing activities. With increasing sediment depth, the amount of reactive iron decrease, the pH increases above 5, and fermentative and as yet unknown Fe(III)-reducing bacteria are also involved in the reduction of Fe(III). Sulfate is reduced apparently by the activity of spore-forming sulfate reducers including new species of Desulfosporosinus that have their pH optimum similar to in situconditions and are not capable of growth at pH 7. However, generation of alkalinity via sulfate reduction is reduced by the anaerobic reoxidation of sulfide back to sulfate. Thus, the microbial cycling of iron at the oxic-anoxic interface and the anaerobic cycling of sulfur maintains environmental conditions appropriate for acidophilic Fe(III)-reducing and acid-tolerant sulfate-reducing microbial communities.  相似文献   

3.
Schwertmannite, an iron(III)-oxyhydroxysulfate formed in acidic mining-impacted stream or lake waters often contaminated with toxic elements like arsenate or chromate, is able to incorporate high amounts of these oxyanions. Detoxification of the water might be achieved if precipitated arsenated or chromated schwertmannite is fixed in the sediment. However, under reduced conditions, reductive dissolution of iron oxides mediated by the activity of Fe(III)-reducing bacteria might mobilize arsenate and chromate again. In this study, the reduction of synthesized arsenated or chromated schwertmannite by the acidophilic Fe(III)-reducer Acidiphilium cryptum JF-5, isolated from an acidic mining-impacted sediment, was investigated. In TSB medium at pH 2.7 with glucose as electron donor, A. cryptum JF-5 reduced about 10% of the total Fe(III) present in pure synthetic schwertmannite but only 5% of Fe(III) present in arsenated schwertmannite. In contrast to sulfate that was released during the reductive dissolution of pure schwertmannite, arsenate was not released during the reduction of arsenated schwertmannite probably due to the high surface complexation constant of arsenate and Fe(III). In medium containing chromated schwertmannite, no Fe(II) was formed, and no glucose was consumed indicating that chromate might have been toxic to cells of A. cryptum JF-5. Both As(V) or Cr(VI) could not be utilized as electron acceptor by A. cryptum JF-5. A comparison between autoclaved (121 °C for 20 min) and non-autoclaved schwertmannite samples demonstrated that nearly 100%of the bound sulfate was released during heating, and FTIR spectra indicated a transformation of schwertmannite to goethite. This structural change was not observed with autoclaved arsenated or chromated schwertmannite. These results suggest that the mobility of arsenate and chromate is not enhanced by the activity of acidophilic Fe(III)-reducing bacteria in mining-impacted sediments. In contrast, the presence of bound arsenate and chromate seemed to stabilize schwertmannite against reductive dissolution and its further transformation to goethite that is an ongoing process in those sediments.  相似文献   

4.
The paper is concerned with biohydrometallurgical methods of cadmium recovery from spent Ni–Cd batteries. Cd leaching efficiency from electrode material in different media (H2SO4 and Fe2(SO4)3 solutions), at different Fe(III) concentrations and using the bacteria Acidithiobacillus ferrooxidans were investigated. The main aim of this study was to understand which from the bioleaching products (sulphuric acid or ferric sulphate) play a main role in the bioleaching process of Cd recovery. The influence of Fe ions on Cd leachability was confirmed. The best leaching efficiency of Cd (100%) was reached by bioleaching and also by leaching in Fe2(SO4)3 solution. The results of X-ray diffraction confirmed that no cadmium was present in solid residuum obtained after the Cd bioleaching as well as Cd leaching using solely ferric iron. The use of H2SO4 solution resulted in the lowest efficiency of Cd leachability, the presence of hydroxides in electrode materials caused neutralization of the leaching solution and inhibition of Cd leaching.  相似文献   

5.
To elucidate the role of Fe(III) reduction in mining lake sediments amended with organic substrates, we performed a large (10 m diameter) enclosure experiment in which sediments were amended with Carbokalk, a waste product from sugar industry containing organic carbon and lime. Fe(III) reduction rates were determined monthly by measuring the accumulation of Fe(II) in the sediments in the field. Fe(III) reduction rates were also determined by incubating sediment samples with synthetic Fe(III) oxyhydroxide under in situ temperature in the laboratory. Sulfate reduction was selectively inhibited in the Fe(III) reduction experiments by addition of sodium molybdate. Sulfate reduction was measured by accumulation of reduced inorganic sulfides in the field and by 35S radiotracer using a core injection technique. Sediment incubation and determination of sulfate reduction rates with radiotracer showed that sulfate reduction and direct microbial Fe(III) reduction occured simultaneously in the upper centimeters of the sediments and that both processes contributed to alkalinity generation. However, Fe(III) reduction was the initial process and rates were at least 3.5 fold higher than sulfate reduction rates. The results indicate that the presence of suitable anions for Fe(II) precipitation as carbonate or sulfide is needed in order to prevent loss of potential alkalinity by Fe(II) diffusion and reoxidation in the water column.  相似文献   

6.
Analysis of the physiological status of subsurface microbial communities generally relies on the study of unattached microorganisms in the groundwater. These approaches have been employed in studies on bioremediation of uranium‐contaminated groundwater at a study site in Rifle, Colorado, in which Geobacter species typically account for over 90 percent of the microbial community in the groundwater during active uranium reduction. However, to develop efficient in situ bioremediation strategies it is necessary to know the status of sediment‐associated microorganisms as well. In order to evaluate the distribution of the natural community of Geobacter during bioremediation of uranium, subsurface sediments were packed into either passive flux meters (PFMs) or sediment columns deployed in groundwater monitoring wells prior to acetate injection during in situ biostimulation field trials. The trials were performed at the Department of Energy's (DOE's) Rifle Integrated Field Research Challenge site. Sediment samples were removed either during the peak of Fe(III) reduction or the peak of sulfate reduction over the course of two separate field experiments and preserved for microscopy. Direct cell counts using fluorescence in situ hybridization (FISH) probes targeting Geobacter species indicated that the majority of Geobacter cells were unattached during Fe(III) reduction, which typically tracks with elevated rates of uranium reduction. Similar measurements conducted during the sulfate‐reducing phase revealed the majority of Geobacter to be attached following exhaustion of more readily bioavailable forms of iron minerals. Laboratory sediment column studies confirmed observations made with sediment samples collected during field trials and indicated that during Fe(III) reduction, Geobacter species are primarily unattached (90 percent), whereas the majority of sulfate‐reducing bacteria and Geobacter species are attached to sediment surfaces when sulfate reduction is the predominant form of metabolism (75 percent and 77 percent, respectively). In addition, artificial sediment experiments showed that pure cultures of Geobacter uraniireducens, isolated from the Rifle site, were primarily unattached once Fe(III) became scarce. These results demonstrate that, although Geobacter species must directly contact Fe(III) oxides in order to reduce them, cells do not firmly attach to the sediments, which is likely an adaptive response to sparsely and heterogeneously dispersed Fe(III) minerals in the subsurface. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
A new strain, Pseudomonas Chlororaphis (PC), was found for dissolving gold, silver, and copper from the metallic particles of crushed waste printed circuit boards (PCBs). The optimized conditions that greatly improved the ability of producing CN? (for dissolving metals) were obtained. Dissolving experiments of pure gold, silver, and copper showed that the metals could be changed into Au+, Ag+, and Cu2+. PC cells and their secreta would adsorb metallic ions. Meanwhile, metallic ions destroyed the growth of PC. Dissolving experiments of metallic particles from crushed waste PCBs were performed by PC. The results indicated that 8.2% of the gold, 12.1% silver, and 52.3% copper were dissolved into solution. This paper contributed significance information to recovering precious metals from waste PCBs by bioleaching.  相似文献   

8.
Chromium is a heavy metal used in various industrial sectors. Improper handling and storage of chromium-laden effluents or wastes can lead to the pollution of the environment. The most toxic form is the more mobile one: hexavalent chromium Cr(VI). The reduction of Cr(VI) results in the immobilisation of chromium into its less toxic trivalent form Cr(III). This phenomenon may prevent the contamination of groundwater when the soil in the vadose zone is contaminated. Many bacteria have been isolated from contaminated soils and described to reduce Cr(VI) into Cr(III). A new Cr(VI)-reducing strain, identified as a Streptomyces thermocarboxydus,has been isolated and studied in our laboratories for its ability to reduce Cr(VI). This aerobic bacterium, in contrast to other genera described which mediate reduction via enzymes, produces reducing agents into the culture supernatants. Cr(VI) reduction by these substances is accelerated by the presence of small concentration of cupric ions (Cu2+). The reducing agent(s) can be easily recovered from the bacterial cultures and used as cell-free solution to treat contaminated soils by an in situ or ex situ processes.  相似文献   

9.
The present work deals with the application of biotechnology for the mobilization of metals from different solid wastes: end of life industrial catalysts, heavy metal contaminated marine sediments and fluorescent powders coming from a cathode ray tube glass recycling process. Performed experiments were aimed at assessing the performance of acidophilic chemoautotrophic Fe/S-oxidizing bacteria for such different solid matrices, also focusing on the effect of solid concentration and of different substrata. The achieved results have evidenced that metal solubilization seems to be strongly influenced by the metal speciation and partitioning in the solid matrix. No biological effect was observed for Ni, Zn, As, Cr mobilization from marine sediments (34%, 44%, 15%, 10% yields, respectively) due to metal partitioning. On the other hand, for spent refinery catalysts (Ni, V, Mo extractions of 83%, 90% and 40%, respectively) and fluorescent powders (Zn and Y extraction of 55% and 70%, respectively), the improvement in metal extraction observed in the presence of a microbial activity confirms the key role of Fe/S oxidizing bacteria and ferrous iron. A negative effect of solid concentration was in general observed on bioleaching performances, due to the toxicity of dissolved metals and/or to the solid organic component.  相似文献   

10.
The effect of sediment redox conditions on the solubility behavior of Fe, Pb, Ni, Ba, and Cu in bottom sediment collected from a produce water discharge site was investigated using kinetics and chemical fractionation procedures. Sediment collected was composited and subsamples incubated in laboratory microcosms under controlled Eh-pH conditions. Sediment was sequentially extracted for determining metals in five fractions (exchangeable, carbonate, bound to iron and manganese oxide, bound to organic matter and sulfide, mineral matrix or residue). Metal distribution in the fractions indicates that under oxidizing sediment conditions, the behavior of Fe, Pb and Ni were governed by Fe(III) and Mn(IV) oxides; Ba by insoluble complexation with humic compounds; and Cu by carbonates and humic complexation. Under reducing sediment condition, the behaviors of Fe and Cu were controlled by the formation of insoluble sulfides and humic complexes; the behaviors of Ni and Ba by carbonate and Pb behavior by sulfides, carbonates and humic complexes. With increases in sediment redox potential, the affinity between Fe(III), Mn(IV) oxides and Fe, Pb, Ni, Cu increased, the affinity between insoluble large molecular humic and Ba increased, and the affinity between carbonates and Cu increased. With decreasing sediment redox potential, the affinity between carbonates and Fe, Ni, Ba increased; the affinity between sulfides, humic substances and Fe, Pb, Ni, Cu also increased. Upon Fe(III) oxide reduction, it is estimated that 20% of total reducible Fe(III) oxides was reduced by direct bacterial reduction (K = −42.6 ppm/day), 80% of total reducible Fe(III) oxides was associated with chemical fractions attributed to sulfide oxidation (K = −171.5 ppm/day). The rate constants (ppm/day) for dissolved Ni (Eh <0 mV), Pb (Eh < −80 mV) and Cu (−80 mV < Eh <0 mV) are −1.6, −0.047 and −0.16, respectively. In our incubation period, the rate constants (ppm/day) for Ni bound to Fe(III) and Mn(IV) oxides, Ba bound to carbonates and Cu bound to insoluble large molecular humic are −3.2, 0.91 and 4.3, respectively.  相似文献   

11.
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm3/kgVS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM = 70:20:10 by weight) was only 336 dm3/kgVS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.  相似文献   

12.
Mesostructured iron oxyhydroxide (FeO x ) and iron oxyhydroxide–phosphate (FeO x P) composites were organized using dodecylsulfate surfactant as a template. X-ray diffraction studies depicted a lamellar structure of the product. Ion exchange and solvent extraction methods were employed for the removal of the surfactant. Carboxylate ions exchanged lamellar type mesostructured material reorganized to a wormhole-like mesoporous material when heated under N2 atmosphere. Surfactant was completely removed by carboxylate ions as observed by the Fourier transform infrared spectra. High surface area acetate-exchanged FeO x (230 m2 g?1) was obtained after the surfactant removal from the composite (2.8 m2 g?1). Surface area of acetate-exchanged FeO x P was the highest (240 m2g?1) after the removal of the surfactant. Local structure of iron species of FeO x was investigated by X-ray absorption fine structure spectroscopy. Further, Fe···Fe bond appeared at 3.21–3.25 Å with coordination number 2–3, showing a high degree of un-saturation of Fe···Fe bonds. As compared with bulk iron oxyhydroxide and iron-intercalated montmorillonite, the mesoporous iron materials were highly effective for arsenic removal from low concentrations of aqueous solutions. Furthermore, mesoporous iron materials were stable in aqueous phase.  相似文献   

13.
Reinserting thermoplastic industrial scrap materials back into the production process must be feasible and cost-effective. Unfortunately, many thermoplastic materials contain colour pigments that cause undesired colour effects and, therefore, have to be removed before recycling. The purpose of this study was to reduce the inorganic colour pigments titanium dioxide, chromium(III) oxide and iron(III) oxide from acrylonitrile butadiene styrene. Based on experiences with dissolution-based polymer recycling, the two methods for removing these colour pigments studied in this project were filtration and centrifugation. Multiple laboratory-scale experiments were performed with two solvent formulations, acetone and CreaSolv? SB. Using the filtration method, both solvent formulations achieved reduction rates of 80% for titanium and iron and 90% for chromium. While similar reduction rates were obtained with high-speed laboratory-type centrifuges for acetone solutions, the results for CreaSolv? SB solutions were considerably lower under the same experimental conditions. Increasing the temperature or centrifugation speed, however, will also increase the reduction rates. Thereby, CreaSolv? SB solutions become suitable for industrial-scale processes. This is important because industrial processes based on CreaSolv? SB solutions are significantly safer than acetone-based processes.  相似文献   

14.
Traditional combustion of syngas derived from biomass has incurred numerous environmental problems, and syngas chemical looping combustion is environmentally friendly for syngas energy conversion. As a key part of chemical looping combustion, reactor configuration is noticeable. The dynamically operated packed bed reactor is an emerging conception applied to chemical looping combustion. Our attention is paid to the conversion of the oxygen carrier in the packed bed as the limited maximum conversion of the oxygen carrier in a packed bed is unclear. In this paper, the reaction front distribution during iron oxide reduced by CO is firstly proposed on the basis of chemical equilibrium and then validated by the effluent gas profile. Based on the reaction front distribution, the detail of the reduction stage in iron-based chemical looping combustion is analyzed to obtain the characteristics of reaction fronts. The reaction rates of reduction from Fe2O3 to Fe3O4, Fe3O4 to Fe0.947O and Fe0.947O to Fe are 5.280, 3.329 and 4.379 mol m?3 s?1, respectively. And the velocities of reaction front I, II, III are 0.605, 0.326, 0.044 cm min?1, respectively, which demonstrate the reaction front distribution. The methodology established in this paper can be used to study multiple reaction front system in the packed bed reactor.  相似文献   

15.
Microbial consortia of composite biofilms, grown in surface water of acidicmining lakes near Lauchhammer, Germany, were investigated. The red-brown colored lake water was acidic (pH 2.5), had high concentrations of Fe(III), Al(III), and sulphate and low concentrations of dissolved organic matter. As a result the abundance of bacteria in the lake is with 104 cells mL-1 rather low. One input of organic material into the lake are autumnal leaves from trees, growing in the lakeside area. From aliquots of unfixed birch leave biofilms the 16S rRNA genes were amplified by PCR and community fingerprints were determined by single-strand conformation polymorphism (SSCP) analysis. Specific bands within the fingerprints were extracted from SSCP gels and sequenced for the taxonomical affiliation.These results were compared with those from the second type of biofilms which were grown on sterile substrata, floating submersed in surface waters of the lakes. By excising the bands from the gel and sequencing the individual bands bacterial taxa, common to both types of biofilms, were found but also some, which were only present in one type of biofilm. Ultrathin sectioned biofilms often showed bacteria associated with electron dense particles as main inorganic constituents. Elemental microanalysis by energy dispersive X-ray analysis (EDX) revealed them to contain iron, sulfur and oxygen as main elemental fractions and electron diffraction ring pattern analysis classified them to be schwertmannite. These bacteria and their interactions with each other as well as with the inorganic minerals formed in this lake generally is of great interest, in order to use these results for bioremediation applications.  相似文献   

16.
Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review   总被引:45,自引:0,他引:45  
The spread of contaminants in soil can be hindered by the soil stabilization technique. Contaminant immobilizing amendments decrease trace element leaching and their bioavailability by inducing various sorption processes: adsorption to mineral surfaces, formation of stable complexes with organic ligands, surface precipitation and ion exchange. Precipitation as salts and co-precipitation can also contribute to reducing contaminant mobility. The technique can be used in in situ and ex situ applications to reclaim and re-vegetate industrially devastated areas and mine-spoils, improve soil quality and reduce contaminant mobility by stabilizing agents and a beneficial use of industrial by-products. This study is an overview of data published during the last five years on the immobilization of one metalloid, As, and four heavy metals, Cr, Cu, Pb and Zn, in soils. The most extensively studied amendments for As immobilization are Fe containing materials. The immobilization of As occurs through adsorption on Fe oxides by replacing the surface hydroxyl groups with the As ions, as well as by the formation of amorphous Fe(III) arsenates and/or insoluble secondary oxidation minerals. Cr stabilization mainly deals with Cr reduction from its toxic and mobile hexavalent form Cr(VI) to stable in natural environments Cr(III). The reduction is accelerated in soil by the presence of organic matter and divalent iron. Clays, carbonates, phosphates and Fe oxides were the common amendments tested for Cu immobilization. The suggested mechanisms of Cu retention were precipitation of Cu carbonates and oxy-hydroxides, ion exchange and formation of ternary cation-anion complexes on the surface of Fe and Al oxy-hydroxides. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments, which reduce the Pb mobility by ionic exchange and precipitation of pyromorphite-type minerals. Zn can be successfully immobilized in soil by phosphorus amendments and clays.  相似文献   

17.
The feasibility of degrading 16 USEPA priority polycyclic aromatic (PAH) hydrocarbons (PAHs) with heat and Fe(II)-EDTA catalyzed persulfate oxidation was investigated in the laboratory. The experiments were conducted to determine the effects of temperature (i.e. 20 C, 30 C and 40 C) and iron-chelate levels (i.e., 250 mg/L-, 375 mg/L- and 500 mg/L-Fe(II)) on the degradation of dissolved PAHs in aqueous systems, using a series of amber glass jars as the reactors that were placed on a shaker inside an incubator for temperature control. Each experiment was run in duplicate and had two controls (i.e., no persulfate in systems). Samples were collected after a reaction period of 144 hrs and measured for PAHs, pH and sodium persulfate levels. The extent of degradation of PAHs was determined by comparing the data for samples with the controls. The experimental results showed that persulfate oxidation under each of the tested conditions effectively degraded the 16 target PAHs. All of the targeted PAHs were degraded to below the instrument detection limits (∼4 μ/L) from a range of initial concentration (i.e., 5 μ/L for benzo(a)pyrene to 57 μ/L for Phenanthrene) within 144 hrs with 5 g/L of sodium persulfate at 20 C, 30 C and 40 C. The data indicated that the persulfate oxidation was effective in degrading the PAHs and that external heat and iron catalysts might not be needed for the degradation of PAHs. The Fe(II)-EDTA catalyzed persulfate also effectively degraded PAHs in the study. In addition, the data on the variation of persulfate concentrations during the experiments indicated that Fe(II)-EDTA accelerated the consumption of persulfate ions. The obtained degradation data cannot be used to evaluate the influence of temperature and Fe(II) levels on the PAH degradation because the PAHs under each of the tested conditions were degraded to below the instrument detection limit within the first sampling point. However, these experiments have demonstrated the feasibility of degrading PAHs in aqueous systems with persulfate oxidation. Additional tests are being conducted to evaluate the effectiveness of treating PAHs in soils and obtaining the rate of degradation of PAHs with persulfate oxidation. Two sets of laboratory experiments were conducted to evaluate the ability of sodium persulfate in oxidizing real world PAH-contaminated soils collected from a Superfund site in Connecticut. The first set of soil sample were treated only with persulfate and to the second batch, mixture of persulfate and Fe(II)-EDTA solutions were added. The results of the second test showed that within 24 hours, 75% to 100% of the initial concentrations of seven PAH compounds detected in the soil samples were degraded by sodium persulfate mixed with FE(II)-EDTA.  相似文献   

18.
The former process for the cementation of transuranic (TRU) low-level wastes poses several technical problems. Specifically in the US a TRU waste-form has not yet passed the Waste Isolation Pilot Plant prohibition for free liquid. For this reason, treatment of the portland cement based waste-form with supercritical carbon dioxide (SCCO2) is shown to satisfy regulations. The effect of SCCO2 treatment by applying different CO2 pressure and temperature conditions (8.4 MPa<p<28 MPa, 35°C<T<62°C) on the leachability, phase constitution, and microstructure of surrogate-doped portland cement type I/II samples is presented. Leaching studies were performed using a synthetic groundwater leaching procedure. Changes in phase constitution of the major crystalline phases (Ca(OH)2, CaCO3) as well as the microstructure were measured by X-ray diffraction and scanning electron microscopy. SCCO2 treatment at 8.4 MPa and 35°C can be shown as the most promising conditions to satisfy the requirements of the Department of Transportation (DOT) and to enhance the natural aging reaction of cement paste by carbonation, combined with the lowest release rates of the surrogates 232Th, and 151/153Eu.  相似文献   

19.
System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na+. For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na+ concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17 d?1 and 0.50 d?1, respectively. Experimental data of co-digestion were in good conformity to the predictions of the model.  相似文献   

20.
The percolation of landfill leachate, even in the absence of a high concentration of specific pollutant, may induce a strong modification of soil chemical and physical characteristics, due to the alteration of the natural equilibrium between the aqueous phase and the soil matrix. As a result, a huge amount of cations can be solubilized, thus inducing groundwater pollution.In this work batch and column experiments of metal mobilization from a soil sampled down gradient of a municipal waste landfill in Northern Italy are presented. The experiments were initially performed in batch scale on soil slurries at different pH and Eh. Distilled water was used first and then a groundwater sampled down-gradient in the same site. Subsequently, to better simulate the aquifer conditions, 50 d column tests were performed on 15 kg of saturated soil. The concentrations of Fe, Mn, and Ni were evaluated when these selected environmental parameters were altered. Results indicated a greater release when acidic conditions were achieved, a positive effect in this case of the addition of an oxidant and a great Mn mobilization when negative redox potentials were established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号