首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pharmaceuticals used in livestock production may be present in manure and slurry as the parent compound and/or metabolites. The environment may therefore be exposed to these substances due to the application of organic fertilisers to agricultural land or deposition by grazing livestock. For other groups of substances that are applied to land (e.g. pesticides), preferential flow in clay soils has been identified as an extremely important mechanism by which surface water pollution can occur. This lysimeter study was therefore performed to investigate the fate of three antibiotics from the sulphonamide, tetracycline and macrolide groups in a clay soil. Only sulphachloropyridazine was detected in leachate and soil analysis at the end of the experiment showed that almost no antibiotic residues remained. These data were analysed alongside field data for the same compounds to show that soil tillage which breaks the connectivity of macropores formed over the summer months, prior to slurry application, significantly reduces chemical mobility.  相似文献   

2.
Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron > isoproturon > chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a mechanistic explanation of the changes in leaching with ageing of residues.  相似文献   

3.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

4.
When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.  相似文献   

5.
Data on the adsorption and transformation rates of diazinon, parathion, tetrachlorvinphos and triazophos in soils were collected from a survey of the literature. As little information is available on their mobility, the adsorption of tetrachlorvinphos and triazophos on three soils was measured in a slurry experiment. Properties of diazinon were introduced into a computer model simulating glasshouse soil systems in a simplified way. The leaching of diazinon from the root zone was calculated to be zero. The properties of the other three organophosphates indicate that in similar computations leaching from the root zone would have been even lower.Samples from tile drains and water courses in areas with many glasshouses were analysed by gas-liquid chromatography. The concentration of the four organophosphate insecticides in almost all of the samples of water from tile drains was below the detectable limit. However in samples from the water courses, pesticide residues were found regularly, sometimes at fairly high concentrations. Thus contamination of water courses would seem to be produced not by leaching of pesticides through the soil but by other pathways.  相似文献   

6.
The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R'mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06-0.21 %) was lower than in those of the loamy clay soil (0.20-0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks.  相似文献   

7.
The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R’mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06–0.21 %) was lower than in those of the loamy clay soil (0.20–0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks.  相似文献   

8.
Phosphorus (P) in wastes from piggeries may contribute to the eutrophication of waterways if not disposed of appropriately. Phosphorus leaching, from three soils with different P sorption characteristics (two with low P retention and one with moderate P retention) when treated with piggery effluent (with or without struvite), was investigated using batch and leaching experiments. The leaching of P retained in soil from the application of struvite effluent was determined. In addition, P leaching from lime residues (resulting from the treatment of piggery effluent with lime to remove P) was determined in comparison to superphosphate when applied to the same three soils. Most P was leached from sandy soils with low P retention when effluent with or without struvite was applied. More than 100% of the filterable P applied in struvite effluent was leached in sandy soils with low P retention. Solid, inorganic forms of P (struvite) became soluble and potentially leachable at pH<7 or were sorbed after dissolution if there were sufficient sorption sites. In sandy soils with low P retention, more than 39% of the total filterable P applied in recycled effluent (without struvite) was leached. Soil P increased mainly in surface layers after treatment with effluent. Sandy soils pre-treated with struvite effluent leached 40% of the P retained in the previous application. Phosphorus decreased in surface layers and increased at depth in the soil with moderate P retention after leaching the struvite effluent pre-treated soil with water. The soils capacity to adsorb P and the soil pH were the major soil properties that affected the rate and amount of P leaching, whereas the important characteristics of the effluent were pH, P concentration and the forms of P in the effluent. Phosphorus losses from soils amended with hydrated lime and lime kiln dust residues were much lower than losses from soils amended with superphosphate. Up to 92% of the P applied as superphosphate was leached from sandy soils with low P retention, whereas only up to 60% of the P applied in lime residues was leached. The P source contributing least to P leaching was the lime kiln dust residue. The amount of P leached depended on the water-soluble P content, neutralising value and application rate of the P source, and the pH and P sorption capacity of the soil.  相似文献   

9.
Blackwell PA  Kay P  Boxall AB 《Chemosphere》2007,67(2):292-299
The environmental fate of the antibiotics sulfachloropyridazine and oxytetracycline was investigated in a sandy loam soil. Liquid pig manure was fortified with the compounds and then applied to soil plots to investigate leaching, dissipation and surface run-off under field conditions. Additionally, as the macrolide antibiotic tylosin had been administered to the pigs from which the slurry had been sourced, this was also analysed for in the samples collected. Sulfachloropyridazine dissipated rapidly with DT(50) and DT(90) values of 3.5 and 18.9 days but oxytetracycline was more persistent with DT(50) and DT(90) values of 21.7 and 98.3 days. Both sulfachloropyridazine and oxytetracyline were detected in surface run-off samples at maximum concentrations of 25.9 and 0.9microg/l respectively but only sulfachloropyridazine was detected in soil water samples at a maximum concentration of 0.78microg/l at 40cm depth 20 days after treatment. Tylosin was not detected in any soil or water samples. The results indicated that tylosin, when applied in slurry, posed very little risk of accumulating in soil or contaminating ground or surface water. However, tylosin may pose a risk if used to treat animals on pasture and risks arising from transformation products of tylosin, formed during slurry storage, cannot be ruled out. Oxytetracycline posed a very low risk of ground or surface water contamination but had the potential to persist in soils and sulfachloropyridazine posed a moderate risk of contaminating ground or surface water but had low potential to accumulate in soils. These findings were consistent with the sorption and persistence characteristics of the compounds and support a number of broad-scale monitoring studies that have measured these antibiotic classes in the environment.  相似文献   

10.
Kay P  Blackwell PA  Boxall AB 《Chemosphere》2005,59(7):951-959
The environment may be exposed to veterinary medicines administered to livestock due to the application of organic fertilisers to land. Slurry is often spread on to fields following the harvest of the previous crop. Despite recommendations to do so, the slurry may not be ploughed into the soil for some time. If precipitation occurs before incorporation then it is likely that the slurry and any antibiotic residues in the slurry will be transported towards surface waters in overland flow. This phenomenon has been investigated in a plot study and transport via 'tramlines' has been compared to that through crop stubble. Three veterinary antibiotics, from the tetracycline, sulphonamide and macrolide groups, were applied to the plots in pig slurry. Twenty four hours after the application the plots were irrigated. Following this the plots received natural rainfall. Sulphachloropyridazine was detected in runoff from the tramline plot at a peak concentration of 703.2 microgl(-1) and oxytetracycline at 71.7 microgl(-1). Peak concentrations from the plot that did not contain a tramline were lower at 415.5 and 32 microgl(-1), respectively. In contrast, tylosin was not detected at all. Mass losses of the compounds were also greater from the tramline plot due to greater runoff generation. These did not exceed 0.42% for sulphachloropyridazine and 0.07% for oxytetracycline however.  相似文献   

11.
A soil column leaching study was conducted on an acidic soil in order to assess the impact of lime-stabilized biosolid on the mobility of metallic pollutants (Cu, Ni, Pb and Zn). Column leaching experiments were conducted by injecting successively CaCl2, oxalic acid and ethylenediaminetetraacetic acid (EDTA) solutions through soil and biosolid-amended soil columns. The comparison of leaching curves showed that the transport of metals is mainly related to the dissolved organic carbon, pH and the nature of extractants. Metal mobility in the soil and biosolid-amended soils is higher with EDTA than with CaCl2 and oxalic acid extractions, indicating that metals are strongly bound to solid-phase components. The single application of lime-stabilized biosolid at a rate ranging from 15 to 30 t/ha tends to decrease the mobility of metals, while repeated applications (2?×?15 t/ha) increase metal leaching from soil. This result highlights the importance of monitoring the movement and concentrations of metals, especially in acid and sandy soils with shallow and smaller water bodies.  相似文献   

12.
Water-soluble inorganic pollutants may constitute an environmental toxicity problem if their movement through soils and potential transfer to plants or groundwater is not arrested. The capability of biochar to immobilise and retain arsenic (As), cadmium (Cd) and zinc (Zn) from a multi-element contaminated sediment-derived soil was explored by a column leaching experiment and scanning electron microanalysis (SEM/EDX). Sorption of Cd and Zn to biochar’s surfaces assisted a 300 and 45-fold reduction in their leachate concentrations, respectively. Retention of both metals was not affected by considerable leaching of water-soluble carbon from biochar, and could not be reversed following subsequent leaching of the sorbant biochar with water at pH 5.5. Weakly water-soluble As was also retained on biochar’s surface but leachate concentrations did not duly decline. It is concluded that biochar can rapidly reduce the mobility of selected contaminants in this polluted soil system, with especially encouraging results for Cd.  相似文献   

13.
《Chemosphere》2013,90(11):1467-1471
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

14.
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

15.
Goal, Scope and Background Transport of P from agricultural land contributes to the eutrophication of surface waters. Soil amendment is considered one of the best management practices (BMPs) to reduce P loss from sandy soils. Laboratory column leaching experiments were conducted to evaluate the effectiveness of different soil amendments in reducing P leaching from a typical sandy soil in Florida. Methods The tested amendments were CaCl2, CaCO3, Al(OH)3, cellulose, and mill mud, and applied at the rate of 15 g/kg for a single amendment and each 7.5 g/kg if two amendments were combined. Leaching was conducted every four days for 32 days, 250 mL of deionized water being leached for each column per leaching event. Leachates were collected from each leaching event and analyzed for reactive P, PO4-P, and macro and micro-elements. Results and Discussion Except for the soils amended with CaCl2, or CaCl2+CaCO3, reactive P and PO4-P leaching losses mainly occurred in the first three leaching events. Phosphorus leaching from the soils amended with CaCl2 or CaCl2+CaCO3 was less but more persistent than that of other amendments. Reactive Pleaching loss was reduced by 36.0% and 40.4% for the amendments of CaCl2, and CaCl2+CaCO3, respectively, as compared with chemical fertilizer alone, and the corresponding values for PO4-P were 70.8% and 71.9%. The concentrations of K, Mg, Cu, and Fe in leachate were also decreased by CaCl2 or CaCl2+CaCO3 amendment. Among the seven amendments, CaCl2, CaCO3, or their combination were most effective in reducing P leaching from the sandy soil, followed by cellulose and Al(OH)3, the effects of mill mud and mill mud + Al(OH)3 were marginal. Conclusions These results indicate that the use of CaCl2, CaCO3, or their combination can significantly reduce P leaching from sandy soil, and should be considered in the development of BMPs for the sandy soil regions. Recommendations and Outlook Most agricultural soils in south Florida are very sandy with minimal holding capacities for moisture and nutrients. Repeated application of fertilizer is necessary to sustain desired yield of crops on these soils. However, eutrophication of fresh water systems in this area has been increasingly concerned by the public. Losses of P from agricultural fields by means of leaching and surface runoff are suspected as one of the important non-point contamination sources. The benefits and effectiveness of soil amendment in reducing P losses from cropping production systems while sustaining desired crop yield need to be demonstrated. Calcium chloride, CaCO3, or their combination significantly reduce Pleaching from sandy soil, and should be considered in the development of BMPs for the sandy soil regions.  相似文献   

16.
This paper reviews current remediation technologies that use chelating agents for the mobilization and removal of potentially toxic metals from contaminated soils. These processes can be done in situ as enhanced phytoextraction, chelant enhanced electrokinetic extraction and soil flushing, or ex situ as the extraction of soil slurry and soil heap/column leaching. Current proposals on how to treat and recycle waste washing solutions after soil is washed are discussed. The major controlling factors in phytoextraction and possible strategies for reducing the leaching of metals associated with the application of chelants are also reviewed. Finally, the possible impact of abiotic and biotic soil factors on the toxicity of metals left after the washing of soil and enhanced phytoextraction are briefly addressed.  相似文献   

17.
A column leaching study was designed to investigate the leaching potential of phosphorus (P) and heavy metals from acidic sandy soils applied with dolomite phosphate rock (DPR) fertilizers containing varying amounts of DPR material and N-Viro soils. DPR fertilizers were made from DPR materials mixing with N-Viro soils at the ratios of 30, 40, 50, 60, and 70 %, and applied in acidic sandy soils at the level of 100 mg available P per kilogram soil. A control and a soluble P chemical fertilizer were also included. The amended soils were incubated at room temperature with 70 % field water holding capacity for 21 days before packed into a soil column and subjected to leaching. Seven leaching events were conducted at days 1, 3, 7, 14, 28, 56, and 70, respectively, and 258.9 mL of deionized water was applied at each leaching events. The leachate was collected for the analyses of pH, electrical conductivity (EC), dissolved organic carbon (DOC), major elements, and heavy metals. DPR fertilizer application resulted in elevations up to 1 unit in pH, 7–10 times in EC, and 20–40 times in K and Ca concentrations, but 3–10 times reduction in P concentration in the leachate as compared with the chemical fertilizer or the control. After seven leaching events, DPR fertilizers with adequate DPR materials significantly reduced cumulative leaching losses of Fe, P, Mn, Cu, and Zn by 20, 55, 3.7, 2.7, and 2.5 times than chemical fertilizer or control. Even though higher cumulative losses of Pb, Co, and Ni were observed after DPR fertilizer application, the loss of Pb, Co, and Ni in leachate was <0.10 mg (in total 1,812 mL leachate). Significant correlations of pH (negative) and DOC (positive) with Cu, Pb, and Zn (P?<?0.01) in leachate were observed. The results indicated that DPR fertilizers had a great advantage over the soluble chemical fertilizer in reducing P loss from the acidic sandy soil with minimal likelihood of heavy metal risk to the water environment. pH elevation and high dissolved organic carbon concentration in soils after DPR fertilizer application are two influential factors.  相似文献   

18.

Fluoroquinolone antibiotics in soil can cause serious antibiotic pollution. Adsorption is the main factor that influences their destination and transport of antibiotics. Therefore, research on the behaviour of antibiotics once they reach the soil environment is meaningful to design appropriate measures to reduce their potential risks. This research took levofloxacin (LVFX) as the research object and used a static adsorption experiment to study the adsorption behaviour of the vadose zone of silty clay on the North China Plain. The results showed that LVFX had high retention in silty clay, with an average adsorption ratio of more than 90%. Adsorption of LVFX on silty clay reached equilibrium in 24 h with an adsorption amount of 93.5 mg/kg at an initial LVFX concentration of 10 mg/L. Acidity, cations and soil organic matter could affect the adsorption of LVFX, with adsorption variation ratio of 3.3%, 3.4% and 0.6%, respectively. In addition, numerical simulation with Hydrus-1D was utilized, and the results show that LVFX may infiltrate into underground water through silty clay after 28 days and completely penetrate in 100 days.

  相似文献   

19.
Rabølle M  Spliid NH 《Chemosphere》2000,40(7):715-722
Laboratory studies were conducted to characterise four different antibiotic compounds with regard to sorption and mobility in various soil types. Distribution coefficients (Kd values) determined by a batch equilibrium method varied between 0.5 and 0.7 for metronidazole, 0.7 and 1.7 for olaquindox and 8 and 128 for tylosin. Tylosin sorption seems to correlate positively with the soil clay content. No other significant interactions between soil characteristics and sorption were observed. Oxytetracycline was particularly strongly sorbed in all soils investigated, with Kd values between 417 in sand soil and 1026 in sandy loam, and no significant desorption was observed. Soil column leaching experiments indicated large differences in the mobility of the four antibiotic substances, corresponding to their respective sorption capabilities. For the weakly adsorbed substances metronidazole and olaquindox the total amounts added were recovered in the leachate of both sandy loam and sand soils. For the strongly adsorbed oxytetracyline and tylosin nothing was detected in the leachate of any of the soil types, indicating a much lower mobility. Results from defractionation and extraction of the columns (30 cm length) showed that 60-80% of the tylosin added had been leached to a depth of 5 cm in the sandy loam soil and 25 cm in the sand soil.  相似文献   

20.
Phosphorus (P) surface run-off losses were studied following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farm yard manure (FYM) and inorganic nitrogen (N) and P fertiliser were compared, over a 4-year period (1993-97). N losses from the same studies are reported in a separate paper. The application of cattle FYM and, especially slurry, to the silty clay loam soil increased both particulate and soluble P loss in surface water flow. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increased application of slurry solids increased all forms of P loss via surface run-off; the results suggested that a threshold for greatly increased risk of P losses via this route, as for N, occurred at ca. 2.5-3.0 t/ha solids loading. This approximates to the 50 m3/ha application rate limit suggested for slurry within UK 'good agricultural practice'. The studies also provided circumstantial evidence of the sealing of the soil surface by slurry solids as the major mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Losses of total and soluble P, recorded for each of the 4 years of experiments, reached a maximum of only up to 2 kg/ha total P (TP), even after slurry applications initiating run-off. Whilst these losses are insignificant in agronomic terms, peak concentrations of P (up to 30,000 micrograms/l TP) in surface water during a run-off event, could be of considerable concern in sensitive catchments. Losses of slurry P via surface run-off could make a significant contribution to accelerated eutrophication on entry to enclosed waters, particularly when combined with high concentrations of NO3(-)-N. Restricting slurry application rates to those consistent with good agronomic practice, and within the limits specified in existing guidelines on good agricultural practice, offers the simplest and most effective control measure against this potentially important source of diffuse pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号