首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in soil respiration (SR), soil temperature (ST) and soil moisture (SM) were compared between a barren land with no vegetation (control) and grassland dominated by Heteropogon contortus (L.) of a semi-arid eco-system during 2005-2006. A statistically significant (p<0.001) seasonal change in SR was observed between the two sites. The variation characteristics of soil CO2 effiux rates were observed during wet periods along precipitation gradients and it was consistently higher in grasslands than in control.A maximum soil CO2 efflux of 13.35 +/- 0.33 micromol m2 s-1 in grassland and 7.33 +/- 0.8 micromol m2 s- in control was observed during rainy season-ll, i.e., from October to December, a minimum of 1.27 +/- 0.2 micromol m-2 s-1 in grassland and 0.67 +/- 0.5 micromol m-2 s-1 in control during summer season, i.e., from March to June. A positive significant relation observed between soil respiration and soil moisture (r2above 0.8) and no significant relation was observed between soil CO2 efflux and soil temperature (r2 below 0.3). In water-limited semi-arid ecosystem, rewetting of the soil due to precipitation events triggered the increased pulses of soil respiration especially in grassland when compared to the barren land. The observed soil respiration rates during summer and after the subsequent precipitation events strongly indicated that the soil water-deficit conditions reduce the efflux both in barren land (control) and in grassland of semi-arid eco-system.  相似文献   

2.
Dijkstra FA  West JB  Hobbie SE  Reich PB  Trost J 《Ecology》2007,88(2):490-500
In nitrogen (N)-limited systems, the potential to sequester carbon depends on the balance between N inputs and losses as well as on how efficiently N is used, yet little is known about responses of these processes to changes in plant species richness, atmospheric CO2 concentration ([CO2]), and N deposition. We examined how plant species richness (1 or 16 species), elevated [CO2] (ambient or 560 ppm), and inorganic N addition (0 or 4 g x m(-2) x yr(-1)) affected ecosystem N losses, specifically leaching of dissolved inorganic N (DIN) and organic N (DON) in a grassland field experiment in Minnesota, USA. We observed greater DIN leaching below 60 cm soil depth in the monoculture plots (on average 1.8 and 3.1 g N x m(-2) x yr(-1) for ambient N and N-fertilized plots respectively) than in the 16-species plots (0.2 g N x m(-2) x yr(-1) for both ambient N and N-fertilized plots), particularly when inorganic N was added. Most likely, loss of complementary resource use and reduced biological N demand in the monoculture plots caused the increase in DIN leaching relative to the high-diversity plots. Elevated [CO2] reduced DIN concentrations under conditions when DIN concentrations were high (i.e., in N-fertilized and monoculture plots). Contrary to the results for DIN, DON leaching was greater in the 16-species plots than in the monoculture plots (on average 0.4 g N x m(-2) x yr(-1) in 16-species plots and 0.2 g N x m(-2) x yr(-1) in monoculture plots). In fact, DON dominated N leaching in the 16-species plots (64% of total N leaching as DON), suggesting that, even with high biological demand for N, substantial amounts of N can be lost as DON. We found no significant main effects of elevated [CO2] on DIN or DON leaching; however, elevated [CO2] reduced the positive effect of inorganic N addition on DON leaching, especially during the second year of observation. Our results suggest that plant species richness, elevated [CO2], and N deposition alter DIN loss primarily through changes in biological N demand. DON losses can be as large as DIN loss but are more sensitive to organic matter production and turnover.  相似文献   

3.
Afforestation, the conversion of unforested lands to forests, is a tool for sequestering anthropogenic carbon dioxide into plant biomass. However, in addition to altering biomass, afforestation can have substantial effects on soil organic carbon (SOC) pools, some of which have much longer turnover times than plant biomass. An increasing body of evidence suggests that the effect of afforestation on SOC may depend on mean annual precipitation (MAP). The goal of this study was to test how labile and bulk pools of SOC and total soil nitrogen (TN) change with afforestation across a rainfall gradient of 600-1500 mm in the Rio de la Plata grasslands of Argentina and Uruguay. The sites were all former grasslands planted with Eucalyptus spp. Overall, we found that afforestation increased (up to 1012 kg C x ha(-1) x yr(-1)) or decreased (as much as 1294 kg C x ha(-1) x yr(-1)) SOC pools in this region and that these changes were significantly related to MAP. Drier sites gained, and wetter sites lost, SOC and TN (r2 = 0.59, P = 0.003; and r2 = 0.57, P = 0.004, respectively). Labile C and N in microbial biomass and extractable soil pools followed similar patterns to bulk SOC and TN. Interestingly, drier sites gained more SOC and TN as plantations aged, while losses reversed as plantations aged in wet sites, suggesting that plantation age in addition to precipitation is a critical driver of changes in soil organic matter with afforestation. This new evidence implies that longer intervals between harvests for plantations could improve SOC storage, ameliorating the negative trends found in humid sites. Our results suggest that the value of afforestation as a carbon sequestration tool should be considered in the context of precipitation and age of the forest stand.  相似文献   

4.
Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.  相似文献   

5.
To better understand agricultural carbon fluxes in California, USA, we estimated changes in soil carbon and woody material between 1980 and 2000 on 3.6 x 10(6) ha of farmland in California. Combining the CASA (Carnegie-Ames-Stanford Approach) model with data on harvest indices and yields, we calculated net primary production, woody production in orchard and vineyard crops, and soil carbon. Over the 21-yr period, two trends resulted in carbon sequestration. Yields increased an average of 20%, corresponding to greater plant biomass and more carbon returned to the soils. Also, orchards and vineyards increased in area from 0.7 x 10(6) ha to 1.0 x 10(6) ha, displacing field crops and sequestering woody carbon. Our model estimates that California's agriculture sequestered an average of 19 g C x m(-2) x yr(-1). Sequestration was lowest in non-rice annual cropland, which sequestered 9 g C x m(-2) x yr(-1) of soil carbon, and highest on land that switched from annual cropland to perennial cropland. Land that switched from annual crops to vineyards sequestered 68 g C x m(-2) x yr(-1), and land that switched from annual crops to orchards sequestered 85 g C x m(-2) x yr(-1). Rice fields, because of a reduction in field burning, sequestered 55 g C x m(-2) x yr(-1) in the 1990s. Over the 21 years, California's 3.6 x 10(6) ha of agricultural land sequestered 11.0 Tg C within soils and 3.5 Tg C in woody biomass, for a total of 14.5 Tg C statewide. This is equal to 0.7% of the state's total fossil fuel emissions over the same time period. If California's agriculture adopted conservation tillage, changed management of almond and walnut prunings, and used all of its orchard and vineyard waste wood in the biomass power plants in the state, California's agriculture could offset up to 1.6% of the fossil fuel emissions in the state.  相似文献   

6.
排水对三江平原沼泽湿地土壤中化学元素的影响   总被引:2,自引:0,他引:2  
以三江平原沼泽湿地生态试验站为研究基地 ,选择典型采样点 ,对排水沟土壤、沼泽土壤、沼泽化草甸土壤 (共有 6个采样点 ,2 8个样品 )进行测试 ,分析土样中主要离子 (HCO3- 、Cl- 、NO3- 、SO4 2 - 、Ca2 +、Mg2 +、K+、Na+)含量、重金属 (铁、锰、锌、铜 )含量、营养元素含量、有机质含量以及土壤pH值 ,研究沼泽排水对沼泽土壤中的化学元素含量的影响。研究结果表明 ,排水使沼泽土壤丧失大量的化学元素  相似文献   

7.
Biogeochemistry of a temperate forest nitrogen gradient   总被引:2,自引:0,他引:2  
Perakis SS  Sinkhorn ER 《Ecology》2011,92(7):1481-1491
Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant-soil-microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (U.S.A.). Surface mineral soil N (0-10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N.ha(-1) x yr(-1). Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for <20% of net N mineralization at low-N sites, increasing to 85-100% of net N mineralization at intermediate- and high-N sites. The ratio of net: gross N mineralization and nitrification increased along the gradient, indicating progressive saturation of microbial N demands at high soil N. Aboveground N uptake by plants increased asymptotically with net N mineralization to a peak of approximately 35 kg N.ha(-1) x yr(-1). Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.  相似文献   

8.
The cycling of base cations (K, Ca, Mg, and Na) was investigated in a boreal balsam fir forest (the Lake Laflamme Watershed) between 1999 and 2005. Base cation budgets were calculated for the soil rooting zone that included atmospheric deposition and soil leaching losses, two scenarios of tree uptake (whole-tree and stem-only harvesting), and three scenarios of mineral weathering, leading to six different scenarios. In every scenario there was a net accumulation of Mg within the soil exchangeable reservoir, while Ca accumulated in four scenarios. Potassium was lost in five of the six scenarios. Contrary to Ca and Mg, immobilization of K within tree biomass (69 mol x ha(-1) x yr(-1)) was the main pathway of K losses from the soil exchangeable reservoir, being five times higher than losses via soil leaching (14 mol x ha(-1) x yr(-1)). The amounts of K contained within the aboveground biomass and the exchangeable soil reservoir were 3.3 kmol/ha and 4.2 kmol/ha, respectively. Whole-tree harvesting may thus remove 44% of the K that is readily available for cycling in the short term, making this forest sensitive to commercial forestry operations. Similar values of annual K uptake as well as a similar distribution of K between tree biomass and soil exchangeable reservoirs at 14 other coniferous sites, distributed throughout the boreal forest of Quebec, suggest that the Lake Laflamme Watershed results can be extrapolated to a much larger area. Stem-only harvesting, which would reduce K exports due to biomass removal by 60%, should be used for these types of forest.  相似文献   

9.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

10.
程建中  李心清  唐源  周志红  王兵  程红光  邢英 《生态环境》2010,19(11):2551-2557
为了解不同土地利用方式对土壤剖面CO2体积分数的影响,采用气相色谱法对贵州喀斯特地区土壤不同深度空气CO2体积分数进行观测。结果表明:不同土地利用对土壤平均CO2体积分数影响较大,其次序为:次生林(0.35%±0.06%)〉草地(0.34%±0.05%)〉人工林(0.27%±0.03%)〉农田(0.16%±0.03%)。次生林、草地与农田之间土壤CO2体积分数差异性显著,而人工林与农田之间无显著性差异。不同土地利用方式土壤剖面CO2体积分数的时空变化特征比较一致:从春季到夏季逐渐增加而从秋季到冬季又逐渐降低,与该区域的温度和降雨量变化趋势一致。同时随着土壤剖面深度增加CO2体积分数逐渐增大,但在土层12 cm处有突然降低现象(农田除外)。不同土地利用方式土壤空气CO2体积分数变化与大气、土壤温度密切相关(r=0.602~0.886,P〈0.05),土壤温度升高会导致土壤CO2体积分数上升。土壤湿度虽然也在一定程度上影响了剖面CO2体积分数,但相关性分析表明二者之间并不显著(r=0.105~0.393,P〉0.05),说明在贵州喀斯特地区,土壤温度对土壤空气CO2体积分数的影响大于土壤湿度。  相似文献   

11.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.  相似文献   

12.
We conducted a four-week laboratory incubation of soil from a Themeda triandra Forsskal grassland to clarify mechanisms of nitrogen (N) cycling processes in relation to carbon (C) and N availability in a hot, semiarid environment. Variation in soil C and N availability was achieved by collecting soil from either under tussocks or the bare soil between tussocks, and by amending soil with Themeda litter. We measured N cycling by monitoring: dissolved organic nitrogen (DON), ammonium (NH4+), and nitrate (NO3-) contents, gross rates of N mineralization and microbial re-mineralization, NH4+ and NO3- immobilization, and autotrophic and heterotrophic nitrification. We monitored C availability by measuring cumulative soil respiration and dissolved organic C (DOC). Litter-amended soil had cumulative respiration that was eightfold greater than non-amended soil (2000 compared with 250 microg C/g soil) and almost twice the DOC content (54 compared with 28 microg C/g soil). However, litter-amended soils had only half as much DON accumulation as non-amended soils (9 compared with 17 microg N/g soil) and lower gross N rates (1-4 compared with 13-26 microg N x [g soil](-1) x d(-1)) and NO3- accumulation (0.5 compared with 22 microg N/g soil). Unamended soil from under tussocks had almost twice the soil respiration as soil from between tussocks (300 compared with 175 microg C/g soil), and greater DOC content (33 compared with 24 microg C/g soil). However, unamended soil from under tussocks had lower gross N rates (3-20 compared with 17-31 microg N x [g soil](-1) d(-1)) and NO3- accumulation (18 compared with 25 microg N/g soil) relative to soil from between tussocks. We conclude that N cycling in this grassland is mediated by both C and N limitations that arise from the patchiness of tussocks and seasonal variability in Themeda litterfall. Heterotrophic nitrification rate explained >50% of total nitrification, but this percentage was not affected by proximity to tussocks or litter amendment. A conceptual model that considers DON as central to N cycling processes provided a useful initial framework to explain results of our study. However, to fully explain N cycling in this semiarid grassland soil, the production of NO3- from organic N sources must be included in this model.  相似文献   

13.
To assess P losses to surface water by runoff during the rice season and by drainage flow during the winter wheat season, serial field trials were conducted in different types of paddy soils in the Tai Lake Region (TLR) during 2000 and 2001. Four P application rates were set as 0 (CK), 30, 150, and 300 kg P/hm2 for flooded rice trials and 0 (CK), 20, 80, 160 kg P/hm2 for winter wheat trials respectively. Field experiments were done in two locations with a plot size of 30 m2 and four replications in a randomized complete block design. A simplified lysimeter was installed for each plot to collect all the runoff or drainage flow from each event. Total P (TP) losses to surface water during rice season by runoff flow from four treatments were 150 (CK), 220 (T30), 395 (T150), 670 (T300) g P/hm2 in year 2000, and 298, 440, 1828, 3744 g P/hm2 in year 2001 respectively in Wuxi station, here the soil is permeable paddy soil derived from loam clay deposit. While the losses were 102, 140, 210, 270 in year 2000, and 128, 165, 359, 589 g P/hm2 in year 2001 respectively in Changshu station, here the soil is waterlogged paddy soil derived from silt loam deposit. During the winter wheat season, total P lost from the fields by drainage flow in the four treatments were 253 (CK), 382 (T20), 580 (T89), 818 (T160) g P/hm2 in year 2000–2001, and 573.3, 709.4, 1123.2, 1552.4 g P/hm2 in year 2001–2002 at the Wuxi station. While these were 395.6, 539.1, 1356.8, 1972.1 g P/hm2 in year 2000–2001, and 811.5, 1184.6, 3001.2, 5333.1 g P/hm2 in year 2001–2002 at the Changshu station. Results revealed that P fertilizer application rates significantly affected the TP concentrations and TP loads in runoff during the rice season, and by drainage flow during the winter wheat season. Both TP loads were significantly increased as the P application rate increases. The data indicate that TP losses to surface water were much higher during the winter wheat season than during the rice season in two tested sites. The data also reveal that the annual precipitation and evaporation rate affected the soil P losses to surface water significantly. Year 2000 was relatively dried with higher evaporation thus P losses to water by both runoff and drainage flow were less than in year 2001 which was a relatively wet year with lower evaporation. Results indicate that texture, structure of the soil profile, and field construction (with or without ridge and deep drains) affected soil P losses to surface water dramatically. Annual possible TP lost to water at the application rate of 50 kg P/hm2 year tested in TLR were estimated from 97 to 185 tones P from permeable paddy soils and 109–218 tones P from waterlogged paddy soils. There was no significant difference of TP lost between the CK and the T50 treatments in both stations, which indicate that there is no more TP lost in field of normal P fertilizer application rate than in control field of no P fertilized. Much higher TP lost in runoff or drainage flow from those other P application rates treatments than from the T50 treatment, which suggest that P losses to surface water would be greatly increasing in the time when higher available P accumulation in plough layer soil in this region.  相似文献   

14.
The rapid increase in residential land area in the United States has raised concern about water pollution associated with nitrogen fertilizers. Nitrate (NO3-) is the form of reactive N that is most susceptible to leaching and runoff; thus, a more thorough understanding of nitrification and NO3(-) availability is needed if we are to accurately predict the consequences of residential expansion for water quality. In particular, there have been few assessments of how the land use history, housing density, and age of residential soils influence NO3(-) pools and fluxes, especially at depth. In this study, we used 1 m deep soil cores to evaluate potential net nitrification and mineralization, microbial respiration and biomass, and soil NO3(-) and NH4+ pools in 32 residential home lawns that differed by previous land use and age, but had similar soil types. These were compared to eight forested reference sites with similar soils. Our results suggest that a change to residential land use has increased pools and production of reactive N, which has clear implications for water quality in the region. However, the results contradict the common assumption that NO3(-) production and availability is dramatically higher in residential soils than in forests in general. While net nitrification (128.6 +/- 15.5 mg m(-2) d(-1) vs. 4.7 +/- 2.3 mg m(-2) d(-1); mean +/- SE) and exchangeable NO3(-) (3.8 +/- 0.5 g/m2 vs. 0.7 +/- 0.3 g/m2) were significantly higher in residential soils than in forest soils in this study, these measures of NO3(-) production and availability were still notably low, comparable to deciduous forest stands in other studies. A second unexpected result was that current homeowner management practices were not predictive of NO3(-) availability or production. This may reflect the transient availability of inorganic N after fertilizer application. Higher housing density and a history of agricultural land use were predictors of greater NO3(-) availability in residential soils. If these factors are good predictors across a wider range of sites, they may be useful indicators of NO3(-) availability and leaching and runoff potential at the landscape scale.  相似文献   

15.
The effects of sea-salt on drainage water and soil chemistry was studied using two different soil types and setting up five soil-leaching experiments under controlled laboratory conditions. The objectives of the soil-leaching experiments were to provide information of the variability of soils and their drainage water chemistry following the input of different sea-salt solutions with different times which was similar to the precipitation input experienced during the storms in fields. Analyses were presented of major ions (Na+, Ca2+, Mg2+, Cl-, NO3-, SO4(2-) and NH4+) and pH for drainage water. At the end of the experiment, CEC (cation exchange capacity), %BS (percent base saturation), exchangeable capacity of Na, Ca and Mg and pH were also analysed for soil horizon chemistry. The results showed an increase in concentration of most of the major ions in the drainage water, though some adsorption of Na, Ca and Mg had taken place; so the result being a significant decrease in soil water pH. The chemical characteristics of each soil horizons also showed significant changes with the sea-salt applications compared to initial chemical characteristics. However, comparison of data from the four different sea-salt applications under different soil type or land-use didn't indicate the additional role that different land management could play in drainage water or soil chemistry.  相似文献   

16.
To assess P losses to surface water by runoff during the rice season and by drainage flow during the winter wheat season, serial field trials were conducted in different types of paddy soils in the Tai Lake Region (TLR) during 2000 and 2001. Four P application rates were set as 0 (CK), 30, 150, and 300 kg P/hm2 for flooded rice trials and 0 (CK), 20, 80, 160 kg P/hm2 for winter wheat trials respectively. Field experiments were done in two locations with a plot size of 30 m2 and four replications in a randomized complete block design. A simplified lysimeter was installed for each plot to collect all the runoff or drainage flow from each event. Total P (TP) losses to surface water during rice season by runoff flow from four treatments were 150 (CK), 220 (T30), 395 (T150), 670 (T300) g P/ hm2 in year 2000, and 298, 440, 1828, 3744 g P/hm2 in year 2001 respectively in Wuxi station, here the soil is permeable paddy soil derived from loam clay deposit. While the losses were 102, 140, 210, 270 in year 2000, and 128, 165, 359, 589 g P/hm2 in year 2001 respectively in Changshu station, here the soil is waterlogged paddy soil derived from silt loam deposit. During the winter wheat season, total P lost from the fields by drainage flow in the four treatments were 253 (CK), 382 (T20), 580 (T89), 818 (T160) g P/hm2 in year 2000--2001, and 573.3, 709.4, 1123.2, 1552.4 g P/hm2 in year 2001--2002 at the Wuxi station. While these were 395.6, 539.1, 1356.8, 1972.1 g P/hm2 in year 2000--2001, and 811.5, 1184.6, 3001.2, 5333.1 g P/hm2 in year 2001--2002 at the Changshu station. Results revealed that P fertilizer application rates significantly affected the TP concentrations and TP loads in runoff during the rice season, and by drainage flow during the winter wheat season. Both TP loads were significantly increased as the P application rate increases. The data indicate that TP losses to surface water were much higher during the winter wheat season than during the rice season in two tested sites. The data also reveal that the annual precipitation and evaporation rate affected the soil P losses to surface water significantly. Year 2000 was relatively dried with higher evaporation thus P losses to water by both runoff and drainage flow were less than in year 2001 which was a relatively wet year with lower evaporation. Results indicate that texture, structure of the soil profile, and field construction (with or without ridge and deep drains) affected soil P losses to surface water dramatically. Annual possible TP lost to water at the application rate of 50 kg P/hm2 year tested in TLR were estimated from 97 to 185 tones P from permeable paddy soils and 109-218 tones P from waterlogged paddy soils. There was no significant difference of TP lost between the CK and the T50 treatments in both stations, which indicate that there is no more TP lost in field of normal P fertilizer application rate than in control field of no P fertilized. Much higher TP lost in runoff or drainage flow from those other P application rates treatments than from the T50 treatment, which suggest that P losses to surface water would be greatly increasing in the time when higher available P accumulation in plough layer soil in this region.  相似文献   

17.
Land use change and nitrogen enrichment of a Rocky Mountain watershed.   总被引:4,自引:0,他引:4  
Headwater ecosystems may have a limited threshold for retaining and removing nutrients delivered by certain types of land use. Nitrogen enrichment was studied in a Rocky Mountain watershed undergoing rapid expansion of population and residential development. Study sites were located along a 30-km transect from the headwaters of the Blue River to Lake Dillon, a major source of drinking water for Denver, Colorado. Ground water in residential areas with septic systems showed high concentrations of nitrate-N (4.96 +/- 1.22 mg/L, mean +/- SE), and approximately 40% of wells contained nitrate with delta15N values in the range of wastewater. Concentrations of dissolved inorganic nitrogen (DIN) in tributaries with residential development peaked during spring snowmelt as concentrations of DIN declined to below detection limits in undeveloped tributaries. Annual export of dissolved organic nitrogen (DON) was considerably lower in residential streams, suggesting a change in forms of N with development. The seasonal delta15N of algae in residential streams was intermediate between baseline values from undeveloped streams and stream algae grown on wastewater. Between 19% and 23% of the annual N export from developed tributaries was derived from septic systems, as estimated from the delta15N of algae. This range was similar to the amount of N export above background determined independently from mass-balance estimates. From a watershed perspective, total loading of N to the Blue River catchment from septic and municipal wastewater (2 kg x ha(-1) x yr(-1)) is currently less than the amount from background atmospheric sources (3 kg x ha(-1) x yr(-1)). Nonetheless, nitrate-N concentrations exceeded limits for safe drinking water in some groundwater wells (10 mg/L), residential streams showed elevated seasonal patterns of nitrate-N concentration and ratios of DIN to total dissolved phosphorus, and seasonal minimum concentrations of nitrate-N in Lake Dillon have increased exponentially to 80 microg/L over the last decade from an initial value near zero. Results suggest that isotopic ratios in autotrophs can be used to detect and quantify increases in N enrichment associated with land use change. The biotic capacity of headwater ecosystems to assimilate increases in inorganic N from residential development may be insufficient to prevent nitrogen enrichment over considerable distances and multiple aquatic ecosystems downstream.  相似文献   

18.
This study examines secondary production and periphyton-invertebrate food web energetics at two sites in an industrially contaminated, nutrient-enriched stream. Secondary production data and data from the literature were used to calculate potential amounts of mercury transferred from periphyton to chironomid larvae and into terrestrial food webs with emerging adults. The nutritional quality of periphyton was characterized using energy content, chlorophyll a, protein, ash-free dry mass (AFDM), and percentage of organic matter. Chironomid larvae (Orthocladiinae: Cricotopus spp.) comprised 96% of all macroinvertebrates collected from stones at the two sites. Cricotopus production was extremely high: production was 59.5 g AFDM x m(-2) x yr(-1) at the site upstream of a 1-ha settling basin and 32.4 g AFDM x m(-2) x yr(-1) at the site below the basin. Apparent differences in annual secondary production were associated with reduced organic content (i.e., nutritional quality) of the periphyton matrix under different loading of total suspended solids. The periphyton matrix at both sites was contaminated with inorganic (Hg(II)) and methyl (MeHg) mercury. The amount of Hg(II) potentially ingested by Cricotopus was calculated to be 49 mg Hg(II) x m(-1) x yr(-1) at the upstream site and 19 mg Hg(II)x m(-2) x yr(-1) at the downstream site. Mercury ingestion by Cricotopus at the downstream site was calculated to be 2% of the estimated annual deposition of particulate-bound Hg(II) to the stream bed. Emergence of adult Cricotopus was calculated to remove 563 microg Hg(II)x m(-2) x yr(-1) from the stream at the upstream site and 117 microg Hg(II) x m(-2) x yr(-1) at the downstream site, which amounted to 4.1 g Hg(II)/yr for the 2.1-km reach of stream included in this study. The ratio of metal export in emergence production to surface area for the study stream was 10 to 10(3) times higher than ratios calculated for lakes using data from the literature. This study is the first well-documented example of extremely high aquatic insect production in an industrially contaminated, nutrient-enriched stream, and it highlights the application of production measurements to examine the role of aquatic insect production in the trophic transfer of energy and persistent contaminants in aquatic food webs and into terrestrial food webs.  相似文献   

19.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

20.
In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号