首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a demand for environmentally friendly processes to synthesize nanoparticles. Here, we synthesized silver nanoparticles using encapsulated biomass beads of Phoma exigua var. exigua. Nanoparticles were characterized by nanoparticle tracking and analysis (NTA), Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. Results of NTA show that nanoparticle size was homogenous. Concerning nanoparticle stability, zeta potential decreased with batch number. Silver nanoparticles exhibited an antibacterial activity against Escherichia coli and Staphylococcus aureus. Overall, the encapsulation of fungal biomass by calcium alginate for the batch synthesis of silver nanoparticles was easy, cost-effective, eco-friendly and suitable for the large-scale synthesis of silver nanoparticles. We have also demonstrated the reusability of the fungal biomass during biosynthesis of silver nanoparticles using the sodium alginate encapsulation method.  相似文献   

2.
In this study, zerovalent iron nanoparticles (Fe0) were synthesized by chemical reduction method using ferric chloride hexahydrate (FeCl3?·?6H2O) as a starting material. Sodium borohydride (NaBH4) was used as a reducer. The synthesized nanozerovalent iron (NZVI) was separated using magnets. The X-ray diffraction pattern of iron (Fe) nanoparticles showed that the presence of intensive diffraction peak at 2θ value of 45.33° from the lattice plane of face-centered cubic Fe unequivocally indicates that the particles are made of pure Fe. The size of the synthesized NZVI was found to be 16.64?nm. The scanning electron micrograph revealed that the particles have a hexagonal and spherical shape in nature. EDX showed the surface atomic distribution and chemical composition of NZVI. The decolorization efficiency rose with increasing concentration of nanoparticles as well as with time. Maximal color removal efficiency was 90.72% when using 0.5?g/100?mL Fe nanoparticle for acridine orange. Data revealed that the function of NZVI on color removal efficiency was statistically significant. The correlation coefficient between NZVI concentration and time showed a strong negative correlation for dyes used in the experiment.  相似文献   

3.
Health issues induced by mosquito illnesses highlight the need for effective control. Here, we developed an efficient carbon-dot-silver nanohybrid to control Anopheles stephensi and Culex quinquefasciatus mosquito species. The nanohybrid was synthesized using a thermal method without addition of any toxic-reducing agent. Monohybrids are found within the ranges of 2–6 nm for carbon-dot and 10–35 nm for silver nanoparticles with uniform distribution. The uniformly dispersed nanohybrid solutions show excellent larvicidal activity within the concentration range of 0.5–1.0 ppm. Morphological studies evidence the presence of strong bonds between nanohybrid and sulphur- or phosphorus-containing compounds such as proteins and DNA present in the larval body. This explains tissue damage at very low concentrations of nanohybrid. Therefore, this nanoweapon has high potential for field applications.  相似文献   

4.
Silver nanoparticles are widely used as antimicrobial compounds based on empirical observations. However, there is few knowledge on the mechanism ruling the antimicrobial activity and toxicity of Ag nanoparticles. Here, we investigated this mechanism. Nano-Ag was synthesised by thermal co-reduction. Mutagenicity analysis was performed using Salmonella typhimurium histidine auxotrophic strains TA 98 and TA 100 at nano-silver concentrations of 100 to 500 µg per plate. Dose-dependent analysis for reactive oxygen species generation has been performed using 2,7-dichlorofluorescein diacetate dye. Membrane integrity has been analyzed at 260 nm, before and after treatment. We also used scanning electron microscopy, membrane permeabilization test, and superoxide formation determinations. Results show that the average particle size of Ag nanoparticle is 60.4 ± 3.8 nm. The minimum inhibitory concentration of Ag nanoparticles for E.coli is 30 µg/mL; the minimum bactericidal concentration is 40 µg/mL. Ames mutagenicity tests showed negative results, which may be explained by the antimicrobial activity of nano-silver. Bacterial inner wall were indeed ruptured, and cytoplasmic content was released after 5 min of treatment in a dose-dependent manner. We thus propose that reactive oxygen generation and alteration of membrane integrity and permeability are the major mechanism of antimicrobial activity of nano-silver.  相似文献   

5.
Biological effects of nanoparticles have attracted widespread attention. However, the interaction between plants and nanoparticles remains unclear. The purpose of this study was to investigate characteristics of nano-sized metal particles in two representative plant species, Erigeron canadensis and Boehmeria nivea, in the Guangdong Province, China. The stems of the plants were sliced and placed on Ni–C grids for field-emission transmission electron microscopy (TEM). The metal-bearing nanoparticles were further analysed for their size, shape, composition, content and other characteristics using X-ray energy spectrum analysis, scanning TEM and selected-area electron diffraction pattern. The results revealed that the plants contain nano-sized Au-bearing particles with a diameter of 5–50 nm, ellipsoid, spherical and bone-rod shapes or irregular morphology with smooth edges. These nanoparticles primarily consisted of Au, Cu, O and Cl. The discovery of Au-bearing nanoparticles in natural plant tissues is of great significance for biological nanoscience. Here, we discuss the function and absorption mechanism of Au-bearing nanoparticles in plants and present the influence of the discovery of Au-bearing nanoparticles in natural plants.  相似文献   

6.
N-doped carbon nanotubes have unique structures and strong interactions with metal nanoparticles due to the presence of nitrogen. There is actually a need for nanoparticles to treat water, without leaching of toxic metals. Here, we synthesized nanocomposites by deposition of Ag and Fe nanoparticles on N-doped carbon nanotubes with a surface area of 52 m2/g and 2 % N content to form nanocomposites. Transmission electron microscopy (TEM) of the nanocomposites revealed that the best dispersion of the deposited nanoparticles was achieved by the microwave-assisted polyol method. The Ag and Fe nanoparticles were indeed monodispersed and uniformly distributed on the surface of the N-doped carbon nanotubes. Deposition could be achieved in 5 min. The wet impregnation and deposition–precipitation methods gave composites with agglomerated nanoparticles. We observed that leaching of Fe and Ag into water was also influenced by the preparation method. No leaching of nanoparticles was observed when the composites were prepared by the microwave polyol method. This synthesis is therefore efficient with less energy and time. The strong metal/N-doped carbon nanotube interactions render these composites suitable for use in water purification.  相似文献   

7.
In India more than 60 % of the population relies on crops for their livelihood. However, crop diseases are one of the major factors limiting productivity. Hence, nanotechnology appears as a new means to control diseases and enhance yield. Here, stable copper nanoparticles were synthesized using cetyl trimethyl ammonium bromide and copper nitrate at room temperature, then characterized by UV–Visible spectrophotometry, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and zeta potential measurement. The antifungal activity was evaluated against three common crop pathogenic Fusarium spp. We found that stable copper nanoparticles synthesized using 0.030 M cetyl trimethyl ammonium bromide and 0.003 M copper nitrate have the maximum activity against Fusarium equiseti with a 25 mm zone of inhibition, followed by F. oxysporum (20 mm) and F. culmorum (19 mm).  相似文献   

8.
This article reports a novel, eco-friendly herbal method to synthesize Cu nanoparticles in large scales. Cu nanoparticles are an alternative to Ag and Au nanoparticles and have potential applications in many industrial areas. Many synthetic routes have been documented for the preparation of copper nanoparticles, but very few routes are eco-friendly and large-scale. We report here the preparation of Cu nanoparticles from aqueous CuSO4 using non-toxic and inexpensive materials like curd, milk, and herbal extracts such as tamarind and lemon juice as capping agents. X-ray diffraction and transmission electron microscopy show that produced particles are nanocrystalline copper 20–50 nm in size with a face-centered cubic structure. Fourier-transformed infrared spectroscopy evidences the role of organic acids in the capping process. The novelty of this work is the synthesis of Cu nanoparticles from CuSO4 without electricity and using non-toxic, cheap capping agents.  相似文献   

9.
Nano-sized apatite particles (nAP) synthesized with carboxymethyl cellulose (CMC) have shown great application potentials in in situ heavy metal remediation. However, differences in CMC’s properties effects on the size of nAP produced are not well understood. In this paper, two types of CMC, with respective molecular weights (MW) of ~120000 and ~240000 Dalton or respective polymerization degrees of 500 (CMC-500) and 1050 (CMC-1050), were studied in a concentration range of 0.05%–0.5% (w/w) for nAP synthesis. Morphology of the particles was characterized with transmission electron microscopy (TEM). Results showed that 0.05% CMC-500 solution gave an average particle size of 148.7±134.9 nm, 0.25% CMC-500 solution produced particles of 21.8±20.4 nm, and, 0.5% CMC-500 solution contained particles of 15.8±7.7 nm. In comparison, 0.05% CMC-1050 solution produced nanoparticles of 6.8±3.2 nm, 0.25% CMC-1050 produced smaller nAP of 4.3±3.2 nm, and 0.5% CMC-1050 synthesized the smallest nanoparticles in this study, with an average diameter of 3.0±2.1 nm. Chemical composition of the products was identified with X-ray diffraction (XRD) as pure hydroxyapatite. Interactions between nAP and CMC were discussed with help of attenuated total reflection Fourier transform infrared (ATRFTIR) spectroscopic data. This study showed that CMC at higher concentration as well as higher MW facilitated to produce finer nanoparticles, showing that nAP size could be manipulated by selecting appropriate CMC MW and/or applying appropriate CMC concentration.  相似文献   

10.
Sulfoxides are versatile synthetic intermediates for the preparation of biological products. Therefore, there is a need for efficient methods to oxidize sulfides into sulfoxides. Such oxidation may be catalyzed by magnetic nanocatalysts due to their good stability, easy synthesis, high surface area, low toxicity and easy separation by magnetic forces. Here we prepared a nanocatalyst by immobilization of the chitosan–Schiff base complex on supramagnetic Fe3O4 nanoparticles. The chitosan–Schiff base complex has been previously prepared by functionalization of chitosan with 5-bromosalicylaldehyde and metalation with copper(II) acetate. The catalyst was characterized by Fourier transform infrared, powder X-ray diffraction, transmission electron microscope, scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Results show that the Fe3O4 nanoparticles and nanocatalyst were spherical in shape with an average size of 20 nm. Upon the covalently anchoring of chitosan–Schiff base Cu complex on the magnetic Fe3O4 nanoparticles, the average size increased to 60 nm. The prepared Fe3O4–chitosan–Schiff base Cu complex catalyzed very efficiently the oxidation of sulfides to sulfoxides with 100 % selectivity in all cases under green reaction conditions and excellent yields. Additionally, ease of recovery and reusability up to four cycles without noticeable loss of catalytic activity make the present protocol beneficial from industrial and environmental viewpoint.  相似文献   

11.
Nisin is an antimicrobial peptide widely used in the food industry. The efficacy of nisin has decreased due to the development of resistant bacteria. For instance, bacteria such as Staphylococcus aureus have resistance by digesting nisin using the nisinase enzyme. The efficacy of nisin could be improved using bioconjugation with metal nanoparticles. Here we synthesized silver nanoparticles using the extract of Cymbopogon citratus; then, we bioconjugated those silver nanoparticles with nisin to form a nanosilver bioconjugate. Silver nanoparticles and silver bioconjugate were characterized by UV–Vis spectroscopy, nanoparticle tracking analysis, zeta potential measurement and transmission electron microscopy. In vitro antimicrobial efficacy of both silver nanoparticles and silver bioconjugate was evaluated against selected food spoilage microorganisms such as Listeria monocytogenes, S. aureus, Pseudomonas fluorescens, Aspergillus niger and Fusarium moniliforme. Results show that the antimicrobial potential of nisin increased after bioconjugation with silver nanoparticles. Further, we developed agar film containing nanosilver bioconjugate and also evaluated its antimicrobial activity against selected food spoilage microorganisms. The agar film demonstrated maximum activity against P. fluorescens, of 19 mm, and the minimum against F. moniliforme, of 12 mm. Overall, agar film containing nisin and silver nanoparticles can be used against food spoilage microorganisms.  相似文献   

12.
The acute toxicity of monodispersed 6 nm and <100 nm poly-dispersed copper oxide nanoparticles toward Daphnia magna was assessed using 48 h immobilization tests. CuSO4 was used as a reference. Four different exposure conditions were tested, to study whether the toxicity of the nanoparticle suspensions changed in a way similar to what is known for dissolved Cu: first in ISO standard test conditions (pH 7.8), second with slight acidity (pH 6.5), third in the presence of citric acid, and fourth in the presence of humic acid. For all four exposure conditions, the toxicity of Cu employed in the three forms followed the same sequence, i.e., CuSO4 > monodispersed 6 nm CuO ? poly-dispersed CuO. The toxicity of all Cu forms decreased from pH 6.5, ? pH 7.8, > pH 7.8 + citric acid, to ? pH 7.8 + humic acid. This pattern is in agreement with concentrations of Cu2+ calculated using the equilibrium model MINTEQ. These findings show that the acute toxicity of copper oxide nanoparticles is governed by test water composition and the chemical species Cu2+.  相似文献   

13.
Humic-like acids (HLA0, HLA70, HLA130, HLA730) were extracted from composts obtained from sewage sludges and trimmings after 0, 70, 130 and 730 days of composting, respectively. In addition, HLA130 was fractionated using SEC-PAGE set-up. Fluorescence spectroscopy revealed that HLA0 was the only sample to contain emission bands characteristic of protein-like compounds (λ exc/λ em: 280/350) and chlorophyll (λ exc/λ em: 420/660). Emission intensities above 400 nm and HIX both varied in the order: HLA70 > HLA130 > HLA730 > HLA0 and increased as the fraction molecular size decreased. Thus, the formation of long wavelength emitting fluorophores during composting is connected to the humification process. These fluorophores are mainly concentrated in the low molecular size fraction obtained by SEC-PAGE fractionation of composts.  相似文献   

14.
This report shows that furfuryl alcohol can be selectively produced from the hydrogenation of furfural using supported Pd nanoparticles. Furfuryl alcohol is widely used as solvent and chemical intermediate for the synthesis of fine chemicals. Here, various Pd nanoparticles supported on mesoporous SiO2 (Pd/SiO2) were simply fabricated by a wet impregnation using palladium nitrate. Physical properties of Pd/SiO2 nanoparticles were studied by X-ray diffraction, energy-dispersive, X-ray analysis, N2 adsorption and desorption isotherms and transmission electron microscopy. Results show a high dispersion of Pd nanoparticles with small size. Pd nanoparticles catalyzed very efficiently the hydrogenation of furfural to furfuryl alcohol with 76 % selectivity under mild conditions. Overall, the catalyst developed could find applications for the production of chemicals from biomass.  相似文献   

15.
As antibiotic-resistant bacterial strains emerge and pose increased global health risks, new antibacterial agents are needed as alternatives to conventional antimicrobials. Naturally occurring antibacterial clays have been identified which are effective in killing antibiotic-resistant bacteria. This study examines a hydrothermally formed antibacterial clay deposit near Crater Lake, OR (USA). Our hypothesis is that antibacterial clays buffer pH and Eh conditions to dissolve unstable mineral phases containing transition metals (primarily Fe2+), while smectite interlayers serve as reservoirs for time release of bactericidal components. Model pathogens (Escherichia coli ATCC 25922 and Staphylococcus epidermidis ATCC 14990) were incubated with clays from different alteration zones of the hydrothermal deposit. In vitro antibacterial susceptibility testing showed that reduced mineral zones were bactericidal, while more oxidized zones had variable antibacterial effect. TEM images showed no indication of cell lysis. Cytoplasmic condensation and cell wall accumulations of <100 nm particles were seen within both bacterial populations. Electron energy loss analysis indicates precipitation of intracellular Fe3+-oxide nanoparticles (<10 nm) in E. coli after 24 h. Clay minerals and pyrite buffer aqueous solutions to pH 2.5–3.1, Eh > 630 mV and contain elevated level (mM) of soluble Fe (Fe2+ and Fe3+) and Al3+. Our interpretation is that rapid uptake of Fe2+ impairs bacterial metabolism by flooding the cell with excess Fe2+ and overwhelming iron storage proteins. As the intracellular Fe2+ oxidizes, it produces reactive oxygen species that damage biomolecules and precipitates Fe-oxides. The ability of antibacterial clays to buffer pH and Eh in chronic non-healing wounds to conditions of healthy skin appears key to their healing potential and viability as an alternative to conventional antibiotics.  相似文献   

16.
We report here the occurrence of uniquely shaped nanoparticles newly discovered in natural ponds. Nanoparticles originate from the Goshiki-numa pond community in Japan, where volcanic activity facilitated the formation of four specific ponds. We built a steric three-dimensional image of nanoparticles by integrating 120 transmission-electron-microscope image fragments obtained from various angle ranges. The thick-walled, cylindrically shaped particle has an outer diameter that measures approximately 40 nm and a length that measures 70 nm. A 10-nm-thick wall surrounds a 30 nm hole located in the particle centre. Particles are composed of an aluminium silicate-based material with an Al2O3:SiO2 ratio of 2:1. They also exhibit an amorphous X-ray diffraction pattern. Although the water solubility characteristics and the infrared spectrum of these newly discovered particles resembles imogolite, these two materials do not have identical structural characteristics.  相似文献   

17.
Nanoscale zero-valent iron, named nano-Fe0, is a reagent used to degrade trichloroethylene in groundwater. However, the efficiency of nano-Fe0 is moderate due to issues of dispersion and reactivity. As an alternative we synthesized bentonite-supported nanoscale Fe/Ni bimetals, named bentonite-Fe/Ni, to test the degradation of trichloroethylene in the presence of Suwannee River humic acids, as a representative of natural organic matter. 0.1 mmol/L trichloroethylene was reacted with 0.5 g/L of nano-Fe0, bentonite-Fe, Fe/Ni, and bentonite-Fe/Ni nanoparticles. Results show first that without humic acids the reaction rate constants k obs were 0.0036/h for nano-Fe0, 0.0101/h for bentonite-Fe, 0.0984/h for Fe/Ni, and 0.181/h for bentonite-Fe/Ni. These findings show that bentonite-Fe/Ni is the most efficient reagent. Second, the addition of humic acids increased the rate constant from 0.178/h for 10 mg/L humic acids to 0.652/h for 40 mg/L humic acids, using the bentonite-Fe/Ni catalyst. This finding is explained by accelerated dechlorination by faster electron transfer induced by humic quinone moieties. Indeed, the use of 9, 10-anthraquinone-2, 6-disulfonate as a humic analogue gave similar results.  相似文献   

18.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   

19.
Hydroxyl-enriched materials are promising boron adsorbents. However, the use of these materials is hampered by issues of separation, recovery, and selectivity, notably due to the presence of interfering ions. Therefore, we synthesized here a cheap magnetic nanopowder, which was further functionalized with polyvinyl alcohol and glycidol to produce boron-selective adsorbents. We studied their selectivity and removal efficiency using batch and fixed-bed systems. Sorption was studied at both concentrated and trace amounts of boron. Results show that nanopowders have 5.3–6.5 nm pore sizes and 145–203 m2/g surface areas, using Brunauer–Emmett–Teller analysis. Polyvinyl alcohol-functionalized particles removed 93 % of boron at 5 mg/L at pH 7 in 30 min, whereas only 68 % of boron was removed by glycidol-functionalized particles. However, at higher boron concentration, of 50 mg/L, glycidol-functionalized particles showed higher adsorption affinity of 68.9 mg/g. We conclude that internal hydroxyl groups of polyvinyl alcohol-functionalized particles are less accessible at higher boron concentration. This is the first report on magnesium ferrites for boron recovery. The spent adsorbents were separated easily from the aqueous media by an external magnet and repeatedly used. Overall, our findings demonstrated that the hydroxyl-enriched magnetic nanopowders are a better alternative to the existing boron adsorbents regarding magnetic separation, reusability, and selectivity.  相似文献   

20.
The use of functionalised metal sulphide nanoparticles (NPs) for nanoremediation and biomedical application is rapidly increasing, which could lead to significant inputs into the marine environment. The potential impact of some NPs on marine organisms is still poorly understood. In the present paper the genotoxic potential of Ag2S and CdS NPs on Mytilus edulis haemocytes was assessed. MPEG-SH (thiol-terminated methyl polyethylene glycol), was used as capping agent to avoid NPs agglomeration. TEM analysis showed that the Ag2S NPs size was 13±7 nm, whereas CdS quantum dots had an average diameter of 4±1 nm. DNA integrity was evaluated by Comet assay following exposure to increasing concentration series (0.01–10 mg/L). Both silver and cadmium NPs showed genotoxic effects at the highest dose. MPEG-SH was also found to exert a weak genotoxic activity, suggesting that at least part of the genotoxic potential of functionalised NPs on mussel cells might be attributable to the capping agent. These results confirm the genotoxic potential of Ag2S NPs for mussel cells and demonstrated, for the first time, that CdS NPs is genotoxic in a marine organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号