首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In studies on the formation of disinfection byproducts (DBPs), it is necessary to scavenge residual active (oxidizing) chlorine in order to fix the chlorination byproducts (such as haloethanoates) at a point in time. Such research projects often have distinct needs from requirements for regulatory compliance monitoring. Thus, methods designed for compliance monitoring are not always directly applicable, but must be adapted. This research describes an adaptation of EPA Method 552 in which ascorbic acid treatment is shown to be a satisfactory means for reducing residual oxidizing chlorine, i.e., HOCl, ClO-, and Cl2, prior to determining concentrations of halocarboxylates. Ascorbic acid rapidly reduces oxidizing chlorine compounds, and it has the advantage of producing inorganic halides and dehydroascorbic acid as opposed to halogenated organic molecules as byproducts. In deionized water and a sample of chlorinated tap water, systematic biases relative to strict adherence to Method 552 were precise and could be corrected for using similarly treated standards and analyte-fortified (spiked) samples. This was demonstrated for the quantitation of chloroethanoate, bromoethanoate, 2,2-dichloropropanoate (dalapon), trichloroethanoate, bromochloroethanoate, and bromodichlorocthanoate when extracted, as the acids, into tert-butyl methyl ether (MTBE) and esterified with diazomethane prior to gas chromatography with electron capture detection (GC-ECD). Recoveries for chloroethanoate, bromoethanoate, dalapon, dichloroethanoate, trichloroethanoate, bromochloroethanoate, bromodichloroethanoate, dibromoethanoate, and 2-bromopropanoate at concentrations near the lower limit of detection were acceptable. Ascorbic acid reduction appears to be the best option presently available when there is a need to quench residual oxidants fast in a DBP formation study without generating other halospecies but must be implemented cautiously to ensure no untoward interactions in the matrix.  相似文献   

2.
Free chlorine has been used extensively as a primary and secondary disinfectant for potable water. Where it is difficult to maintain a free chlorine residual or when disinfection by-products (DBPs) are of concern, monochloramine has been used to provide a stable disinfectant residual in distributions systems. Reactions of disinfectants, free chlorine or monochloramine, with natural organic matter (NOM) consequently result in the formation of DBPs such as trihalomethanes and haloacetic acids. However, few studies have focused on the fate and kinetics of monochloramine loss in the presence of reactive constituents such as NOM. Monochloramine is inherently unstable and decays even without reactive constituents present via a mechanism known as autodecomposition. Therefore, to predict monochloramine concentrations in the presence of NOM is clearly associated with the ability to adequately model autodecomposition. This study presents the results of a semi-mechanisiic model capable of predicting the loss of monochloramine in the presence of humic material in the pH range of 6.55-8.33. The model accounts for both fast and a slow monochloramine demand to explain the loss of monochloramine over the pH range of this study. The formation of dichloroacetic acid was also predicted due to the ability of the model to differentiate monochloramine reaction pathways in the presence NOM. The results shown here demonstrate the ability of a semi-mechanistic model to predict monochloramine residuals and DBP formation in the presence of humic material.  相似文献   

3.
Disinfection By-Products in Water Produced by Ozonation and Chlorination   总被引:6,自引:0,他引:6  
Water produced by advanced treatment of a groundwater was evaluated to determine the amount of DBPs (Disinfection By-Products) including trihalomethanes (THMs). Both Gas Chromatography (GC) and Gas Chromatography/Mass Spectrometry (GS/MS) were adopted for detection and identification of DBPs such as trihalomethanes (THMs), halo-acetic acids (HAAs) and aldehydes. Two disinfection modes (ozonation followed by chlorination and chlorination alone) were compared to determine the DBPs generation. The mutagenitic acivity of ozonated water, chlorinated water after ozonation and potable water was assessed using the Ames test. Chloroform, dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were the main constituents of THMs and HAAs, respectively. THMs accounted for more than 85% of all DBPs measured, whereas haloacetic acids accounted for around 14%. Ozonation followed by chlorination proved to be better in terms of THMs and HAAs control. The combined system produced 28.3% less DBPs compared to chlorination alone. Ozonation was found capable of reducing mutagenic matter in the groundwater by 54.7%. The combined system also resulted in water with no mutagenicity.  相似文献   

4.
Gas chromatography-mass spectrometry (GC-MS) has played a pivotal role in the discovery of disinfection by-products (DBPs) in drinking water. DBPs are formed when disinfectants, such as chlorine, ozone, chlorine dioxide or chloramine, react with natural organic matter in the water. The first DBP known--chloroform--was identified by Rook in 1974 using GC-MS. Soon thereafter, chloroform and other trihalomethanes were found to be ubiquitous in chlorinated drinking water. In 1976, the National Cancer Institute published results linking chloroform to cancer in laboratory animals, and an important public health issue was born. Mass spectrometry and, specifically, GC-MS became the key tool used for measuring these DBPs in water and for discovering other DBPs that were formed. Over the last 25 years, hundreds of DBPs have been identified, mostly through the use of GC-MS, which has spawned additional health effects studies and regulations. Early on, GC with low resolution electron ionization (EI)-MS was used, together with confirmation with chemical standards, for identification work. Later, researchers utilized chemical ionization (CI)-MS to provide molecular weight information and high resolution El-MS to aid in the determination of empirical formulae for the molecular ions and fragments. More recently, liquid chromatography-mass spectrometry (LC-MS) with either electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) has been used to try to uncover highly polar DBPs that most experts believe have been missed by earlier GC-MS studies. Despite 25 years of research in the identification of new DBPs, new ones are being discovered every year, even for chlorine which has been the most extensively studied.  相似文献   

5.
Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water supplies: gas chromatography (GC-MS, GC-ECD); capillary electrophoresis (CE); liquid chromatography (LC), including ion chromatography (IC); and electrospray ionization mass spectrometry (ESI-MS). Detection limits required to analyze potable water samples can be regularly achieved only by GC-ECD and ESI-MS. Without improvements in preconcentration or detector sensitivity, CE and LC will not find application to potable water supplies. The predominant GC-ECD methods use either diazomethane or acidified methanol to esterify (methylate) the carboxylic acid moiety. For HAA5 analytes, regulated under the EPA's Stage 1 DBP Rule, diazomethane is satisfactory. For HAA9 data gathered under the Information Collection Rule, acidified methanol outperforms diazomethane, which suffers from photo-promoted side reactions, especially for the brominated trihaloacetic acids. Although ESI-MS can meet sensitivity and selectivity requirements, limited instrumentation availability means this technique will not be widely used for the time being. However, ESI-MS can provide valuable confirmatory information when coupled with GC-ECD in a research setting.  相似文献   

6.
Total organic bromine (TOBr) is a collective parameter representing all the brominated organic disinfection byproducts (DBPs) in water samples. TOBr can be measured using the adsorption-pyrolysis method according to Standard Method 5320B. This method involves that brominated organic DBPs are separated from inorganic halides and concentrated from aqueous solution by adsorption onto the activated carbon (AC). Previous studies have reported that some commonly known brominated DBPs can partially penetrate through the AC during this adsorption step. In this work, the penetration of polar brominated DBPs through AC and ozone-modified AC was explored with two simulated drinking water samples and one chlorinated wastewater effluent sample. Polar brominated DBPs were selectively detected with a novel precursor ion scan method using electrospray ionization-triple quadrupole mass spectrometry. The results show that 3.4% and 10.4% of polar brominated DBPs (in terms of total ion intensity) in the chlorinated Suwannee River fulvic acid and humic acid samples, respectively, penetrated through the AC, and 19.6% of polar brominated DBPs in the chlorinated secondary wastewater effluent sample penetrated through the AC. The ozone-modification of AC minimized the penetration of polar brominated DBPs during the TOBr analysis.  相似文献   

7.
Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants), i.e. HOCl, Cl2, Br2 and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include certain haloalkanes, haloalkenes, haloethanenitriles, haloaldehydes, haloketones and trichloronitromethane. When used as a dehalogenating agent immediately before analysis, only one analyte, 2,2,2-trichloroethanediol (chloral hydrate), is significantly decomposed. Ascorbic acid is superior to thiosulfate and sulfite as it does not destroy trichloroethanenitrile (trichloroacetonitrile), trichloronitromethane (chloropicrin) or dibromoethanenitrile (dibromoacetonitrile). Unlike ammonia or amines, it is not nucleophilic and cannot form hemiaminals (carbinolamines) with carboxaldehydes and ketones. Ascorbic acid treatment can rapidly consume (reduce) large amounts of active (oxidizing) halogen compounds, producing only inorganic halides and dehydroascorbic acid and not additional halogenated organic molecules.  相似文献   

8.
For some utilities, new US drinking water regulations may require the removal of disinfection byproduct (DBP) precursor material as a means of minimizing DBP formation. The Environmental Protection Agency's Stage 1 DBP Rule relies on total organic carbon (TOC) concentrations as a measure of the effectiveness of treatment techniques for removing organic material that could act as DBP precursors. Accordingly, precise and accurate methods are needed for the determination of TOC and dissolved organic carbon (DOC) concentrations in raw and finished potable water supplies. This review describes the current analytical technologies and summarizes the key factors affecting measurement quality. It provides a look into the fundamental principles and workings of TOC analyzers. Current peroxydisulfuric acid wet ashing methods and combustion methods are discussed. Issues affecting quality control, such as non-zero blanks and preservation, are covered. Some of the difficulties in analyzing water for TOC and DOC that were identified up to 20 years ago still remain problematic today. Limitations in technology, reagent purity, operator skill and knowledge of natural organic matter (NOM) can preclude the level of precision and accuracy desirable for compliance monitoring.  相似文献   

9.
水中消毒副产物的监测方法研究进展   总被引:1,自引:0,他引:1  
含氯、含氧等杀菌类消毒剂在饮用水生产、废水排放、再生水利用等环节应用广泛,会与水中的前驱物通过取代、氧化还原、水解、加成等反应形成种类繁多的消毒副产物(DBPs).DBPs的靶标监测基于已知DBPs的特性如挥发性、半挥发性、不挥发性等,采取相应的前处理和仪器分析方法;非靶标鉴别可对大量未知的DBPs进行筛查.综述了三卤...  相似文献   

10.
Activated carbon treatment of drinking water is used to remove natural organic matter (NOM) precursors that lead to the formation of disinfection byproducts. The innate hydrophobic nature and macromolecular size of NOM render it amenable to sorption by activated carbon. Batch equilibrium and minicolumn breakthrough adsorption studies were performed using granular activated carbon to treat NOM-contaminated water. Ultraviolet (UV) absorption spectroscopy and flow field-flow fractionation analysis using tandem diode-array and fluorescence detectors were used to monitor the activated carbon sorption of NOM. Using these techniques, it was possible to study activated carbon adsorption properties of UV absorbing, fluorescing and nonfluorescing, polyelectrolytic macromolecules fractionated from the total macromolecular and nonmacromolecular composition of NOM. Adsorption isotherms were constructed at pH 6 and pH 9. Data were described by the traditional and modified Freundlich models. Activated carbon capacity and adsorbability were compared among fractionated molecular subsets of fulvic and humic acids. Preferential adsorption (or adsorptive fractionation) of polyelectrolytic, fluorescing fulvic and humic macromolecules on activated carbon was observed. The significance of observing preferential adsorption on activated carbon of fluorescing macromolecular components relative to nonfluorescing components is that this phenomenon changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the composition that existed in the aqueous phase prior to adsorption. Likewise, it changes the composition of dissolved organic matter remaining in equilibrium in the aqueous phase relative to the adsorbed phase. This research increases our understanding of NOM interactions with activated carbon which may lead to improved methods of potable water production.  相似文献   

11.
Occurrence of halogenated disinfection by-products (DBPs) (trihalomethanes –THMs– and haloacetic acids –HAAs–) in the waters of two utilities in Quebec City (Canada) was investigated using two approaches: experimental chlorination studies and full-scale sampling within distribution systems. Experimental studies were designed to reproduce treatment plant and distribution system conditions (chlorine dose, water temperature, pH and water residence time). Differences in halogenated DBPs in the two distribution systems under study were significant and comparable to those observed in experimental laboratory studies. For the waters of both utilities, chlorination studies better reproduced the occurrence of halogenated DBPs in points of the distribution system located near the treatment plant (low residence time of water) than in other points. Multivariate regression models for THMs, HAAs and their species were developed using the data from experimental studies in order to predict halogenated DBP levels measured in the distribution system. Models were all statistically significant, but showed low ability to predict full-scale halogenated DBPs, particularly in points located at distribution system extremities. Specifically, experimental chlorination-based models are not able to simulate the decrease of HAA levels. Results of this research suggest that the use of experimental data to predict halogenated DBP levels in full-scale distribution systems – for operational, regulatory and epidemiological purposes – must be done with caution.  相似文献   

12.
Disinfection by-product formation potentials (DBPFPs) in wastewater effluents from eight wastewater treatment plants (WWTPs) were investigated. In addition, a WWTP with one primary effluent and two different biological treatment processes was selected for a comparative study. Formation potential tests were carried out to determine the levels of DBP precursors in wastewater. WWTPs that achieved better organic matter removal and nitrification tended to result in lower DBPFPs in effluents. For the WWTP with two processes, haloacetic acid, trihalomethane, and chloral hydrate precursors were predominant DBP precursors in the primary and secondary effluents. The percent reductions of haloacetonitrile and haloketone formation potentials averaged at 96% which was high in comparison to the reductions of other classes of DBPFPs. In addition, biological treatment changed the DBPFP speciation profile by lowering the HAAFP/THMFP ratio. The eight plant survey and the comparative analysis of the WWTP with two processes implied that besides nitrification, there may be other confounding factors impacting DBPFPs. Oxic and anoxic conditions, formation and degradation of soluble microbial products had impacts on the DBPFP reductions. This information can be used by water and wastewater professionals to better control wastewater-derived DBPs in downstream potable water supplies.  相似文献   

13.
Chlorination is the most widely used technique for disinfection of drinking water. A consequence of chlorination is the formation of Disinfection By-Products (DBPs). The formation of DBPs in drinking water results from the reaction of chlorine with naturally occurring organic materials, principally humic and fulvic acids. This paper focuses on the effect of humic substances on the formation of twenty-four compounds belonging to different categories of DBPs. This investigation was conducted in two water treatment plants in Greece, Menidi and Galatsi, from July 1999 to April 2000. Humic substances were determined by the diethylaminoethyl (DEAE) method with subsequent UV measurement. The techniques used for the determination of DBPs were liquid-liquid extraction, gas chromatography and mass spectrometry. The concentrations of DBPs were generally low. Total trihalomethanes (TTHMs) ranged from 5.1 to 24.6 microg L(-1), and total haloacetic acids (HAAs) concentration ranged from 8.6 to 28.4 microg L(-1), while haloaketones (HKs) and chloral hydrate (CH) occurred below 1 microg L(-1). The content of humic substances was found to influence the formation of DBPs and especially TTHMs, trichloroacetic acid (TCA), dibromoacetic acid (DBA), CH, 1,1-dichloropropanone (1.1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP). Seasonal variation of TTHMs and HAAs generally followed that of humic substances content with peaks occurring in autumn and spring. The trends of 1,1-DCP, 1,1,1-TCP and CH formation seemed to be in contrast to TTHMs and HAAs. Trends of formation of individual compounds varied in some cases, probably due to influence of parameters other than humic substances content. Statistical analysis of the results showed that the concentrations of TTHMs, CH, 1,1-DCP, 1,1,1-TCP, TCA and DBA are strongly affected from humic substances content (at 0.01 confidence level). The opposite is true for dichloroacetic acid (DCA) concentration. Humic substances also vary to a statistically significant degree during different months, as well as the concentrations of TTHMs, CH, 1,1-DCP, 1,1,1-TCP, TCA and DCA. The variance of DBA was not statistically significant. Regarding the effect of sampling station, humic substances content showed no statistically significant difference between the two raw water sources studied.  相似文献   

14.
水中消毒副产物(DBPs)是在水消毒过程中消毒剂与水中溶解性有机物以及无机离子发生反应而产生,其对水环境生态安全和人体健康有不利影响。简述了DBPs的生成、种类、毒性和分析方法等,重点综述了气相色谱-质谱联用(GC-MS)、液相色谱-质谱联用(LC-MS)、离子色谱-质谱联用(IC-MS)以及超高分辨率质谱(UPMS)等质谱(MS)及其联用技术在水中DBPs识别和分析中的应用,分析了不同MS技术的特点和应用实例,提出了MS技术在DBPs研究领域的发展方向与挑战。  相似文献   

15.
简述了饮用水消毒副产物(DBPs)的基因毒性与致癌性的研究进展。从Ames试验、SOS/umu试验、彗星试验、微核试验及一些新颖的致突变试验结果对DBPs基因的毒性,以及从毒理学实验、流行病学研究和致癌风险评估3个方面对DBPs的致癌性进行了分析和总结,以期为今后饮用水DBPs毒性效应及其致毒机理研究提供参考,进而促进饮用水质量管理与立法的发展。  相似文献   

16.
Brominated organic and inorganic by-products are generated during ozonation of groundwater containing high bromide concentrations. This study measured concentrations of bromate, bromoform, bromoacetic acids, bromoacetonitriles, bromoacetone, 2,4-dibromophenol and aldehyde generated by ozonation. The potential mutagenicity of ozonated waters was assessed using the Ames and Microtox tests. Test results for the 18 ozonated groundwater samples demonstrate that bromate formation is associated with high pH, bromide and alkalinity content, low levels of dissolved organic carbon (DOC) and ammonia, and low alkalinity. Brominated organic by-products were correlated with high bromide ion and natural organic matter content, and low ammonia concentrations. The Ames test results demonstrate that all extracts from ozonated water have mutagenic activity; however, the 18 raw groundwater samples had no mutagenicity. The Microtox test results also show that the ozonated water samples were highly toxic. Generally, both bromide and DOC content promoted the formation of ozonation by-products and mutagenicity. Controlling of bromide and DOC concentrations is an effective method of reducing potential by-product formation and eliminating mutagenicity problems associated with groundwater ozonation.  相似文献   

17.
Salts of 2,2-dichloropropionic acid, such as dalapon, are well known as herbicides and are regulated as such in potable water in Australia and elsewhere. It is also an identified disinfection by-product (DBP), but little is known about the compound's formation and typical levels from this source. This work presents results from a sampling campaign where 2,2-dichloropropionate was found at levels between 0.1 and 0.5 μg l(-1) in potable water samples from a major treatment plant in South East Queensland, Australia. However, levels were below the reporting limit (0.01 μg l(-1)) in the immediate source water for the plant. Also, temporal trends in 2,2-dichloropropionate observed in treated water during sampling mirrored those of trihalomethanes albeit at much lower concentrations, suggesting that the occurrence is due to in situ formation as a DBP. This could present a regulatory dilemma in some jurisdictions.  相似文献   

18.
Inactivating pathogens is essential to eradicate waterborne diseases. However, disinfection forms undesirable disinfection by-products (DBPs) in the presence of natural organic matter. Many regulations and guidelines exist to limit DBP exposure for eliminating possible health impacts such as bladder cancer, reproductive effects, and child development effects. In this paper, an index named non-compliance potential (NCP) index is proposed to evaluate regulatory violations by DBPs. The index can serve to evaluate water quality in distribution networks using the Bayesian Belief Network (BBN). BBN is a graphical model to represent contributing variables and their probabilistic relationships. Total trihalomethanes (TTHM), haloacetic acids (HAA5), and free residual chlorine (FRC) are selected as the variables to predict the NCP index. A methodology has been proposed to implement the index using either monitored data, empirical model results (e.g., multiple linear regression), and disinfectant kinetics through EPANET simulations. The index’s usefulness is demonstrated through two case studies on municipal distribution systems using both full-scale monitoring and modeled data. The proposed approach can be implemented for data-sparse conditions, making it especially useful for smaller municipal drinking water systems.  相似文献   

19.
The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (<0.035 mg l(-1)) and HAAs (<0.019 mg l(-1)) concentrations were observed at all sampling locations. Results from the observed negative Langelier Saturation Index (LSI) values, higher Ryznar Stability Index (RSI) values, and high Fe3+ concentrations at some pipe-end locations indicate that highly oxidative and corrosive conditions occurred. This reveals that pipe replacement should be considered at these locations. These findings would be helpful in managing the water distribution system for maintaining a safe drinking water quality.  相似文献   

20.
In the United States, the newly promulgateddisinfectant/disinfection by-product (D/DBP) regulationsforce water treatment utilities to be more concerned withfinished and distributed water qualities. In this study,monitoring of DBP formation was conducted from three Frenchwater treatment plants trying to assess DBP variationsthrough time and space. Compared to the in-plant totaltrihalomethanes (TTHM) levels, TTHM levels in thedistribution system increased from less than 150% to morethan 300%. Significant variations for TTHM and bromate(BrO3 -) levels throughout the seasons were alsoobserved; generally higher levels in the summer and lowerlevels in the winter. Combining chemical DBP models(empirical power functional models) and hydraulicsimulations, DBPs including TTHM and BrO3 - weresuccessfully simulated from the full-scale monitoring data,indicating that empirical DBP model can be a potential toolto access DBP formation in actual plants. This study alsoprovides the protocols to assess DBP simulations in thewater treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号