首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Central-place foraging theory has been unable to explain the load selection behavior of leaf-cutting ants (Atta spp., Attini: Formicidae). We suggest that this is due to incomplete consideration of the sequence of behaviors involved in resource acquisition by these ants. Unlike most central-place foragers, leaf-cutting ants do not return to their nests with food. Instead, the leaf fragments they gather must be processed within the nest to convert them to substrate for fungal gardens. We have shown previously that leaf fragment size affects the rate of distribution and processing of leaf tissue inside laboratory nests of Atta colombica. Including these tasks in the calculation of foraging rate may help explain load selection and other features of central-place foraging by Atta colonies. Here we develop a mathematical model of the complete sequence of external and internal tasks that lead to addition of substrate to fungal gardens. Using realistic parameter values, the leaf fragment sizes predicted to maximize a colony's rate of foraging in this broad sense correspond well with the mean fragment sizes actually collected by Atta colonies in the field. The optimal fragment size for global performance in the model is below the size that would maximize the delivery rate by above-ground foragers. The globally optimal size also fails to maximize the rate of either fragment distribution or fragment processing within the nest. Our results show how maximum collective performance of an ensemble of linked tasks may require behavior that would appear suboptimal in a piecemeal analysis of tasks.  相似文献   

2.
Group living is a common strategy among animals and has arisen independently in over 300 species of Lepidoptera. Yet, activity synchrony between individuals is necessary to derive the benefits that ensue from an aggregated lifestyle. Which individuals decide which activities to perform and when to perform them is, therefore, a fundamental question. In some species of social caterpillars and sawflies, the role of a potential behavioral polyethism between individuals has been suggested, whereby certain individuals are consistently more likely to initiate and lead a foraging event. However, in these cases, evidence in support of division of labor is lacking. This study was undertaken to determine if certain individuals of Malacosoma disstria are more likely to be consistent group leaders or if transient leaders could be predicted by the differences in energetic states between individuals. The results of this study indicate that unfed caterpillars initiate foraging bouts and are more likely to lead locomotion. There was no size or sex-based bias in those individuals that acted as temporary leaders. Consistent behavioral differences between individuals, if they exist, are therefore not necessary to explain task allocation and synchronization during foraging in this species.  相似文献   

3.
Summary Western harvester ants, Pogonomyrmex occidentalis, preferentially utilize low vegetational cover pathways. Energetic costs for foraging ants were less than 0.1% of caloric rewards of harvested seeds, suggesting that reduction of energetic cost is not a major benefit of this preference. Walking speed was significantly faster on lower cover routes, increasing net return rates from equidistant artificial food sources. Undisturbed foragers on low cover routes traveled farther, increasing their total foraging area without increasing foraging time. These results suggest that in animals with low costs of locomotion relative to energetic rewards, time costs are more important than direct energetic costs in influencing foraging decisions. In baited experiments with equidistant food sources, preferential use of low cover routes resulted in a large increase in net energetic gain rate, but only a slight increase in energetic efficiency. Under natural conditions, net energetic gain rates were constant for foragers using low and high vegetational cover routes, but foragers using low cover paths had lower efficiencies. This suggests that net energetic gain rate is a more important currency than energetic efficiency for foraging harvester ants.  相似文献   

4.
Dominance relationships among species play a major role in the structure of animal communities. Yet, dominant species with different trade-offs in resource exploitation and monopolization could affect community structure in variable ways. In ants, dominant species could be classified into either behavioral dominants that exhibit territorial aggression or numerical dominants that exhibit high biomass or frequency of occurrence. While each class of dominance has generally been found to negatively affect the foraging activity of species in ant communities, the concurrent effect of both classes of species has never been tested. Here, we examined the effects of two behaviorally dominant species, Crematogaster inermis and Monomorium salomonis, and a numerically dominant species, Messor arenarius, on the foraging behavior of seed-eating species in a desert ant assemblage. In a 1-year study, the foraging activity of the ant species was assessed using seed baits, which were sampled during night and day. While the numerically dominant species exhibited high foraging efficiency and negatively affected the ability of other seed-eating species to obtain seeds, significantly more seeds remained at baits that were occupied the previous night by each of the two behaviorally dominant species, possibly due to aggressive exclusion of M. arenarius foragers from the baits. This exclusion also facilitated greater foraging activity of the seed-eating species. Our results demonstrate how these two types of dominance could differently affect the foraging activity of ant species in the community.  相似文献   

5.
Solitary foragers can balance demands for food and safety by varying their relative use of foraging patches and their level of vigilance. Here, we investigate whether colonies of the ant, Formica perpilosa, can balance these demands by dividing labor among workers. We show that foragers collecting nectar in vegetation near their nest are smaller than are those collecting nectar at sites away from the nest. We then use performance tests to show that smaller workers are more likely to succumb to attack from conspecifics but feed on nectar more efficiently than larger workers, suggesting a size-related trade-off between risk susceptibility and harvesting ability. Because foragers that travel away from the nest are probably more likely to encounter ants from neighboring colonies, this trade-off could explain the benefits of dividing foraging labor among workers. In a laboratory experiment, we show that contact with aggressive workers results in an increase in the mean size of recruits to a foraging site: this increase was not the result of more large recruits, but rather because fewer smaller ants traveled to the site. These results suggest that workers particularly susceptible to risk avoid dangerous sites, and suggest that variation in worker size can allow colonies to exploit profitably both hazardous and resource-poor patches.Communicated by L. Sundström  相似文献   

6.
Summary During recruitment, running velocity of both outbound and laden workers of the leaf-cutting ant Acromyrmex lundi depended on the information about resource quality they received from the first successful recruiter. In independent assays, single scout ants were allowed to collect sugar solutions of different concentrations and to recruit nestmates. Recruited workers were presented with standardized paper discs rather than the sugar solution given to the original recruiting ant. Outbound recruited workers were observed to run faster the more concentrated the solution found by the recruiter. Speed of disc-laden workers also depended on the concentration of the solution found by the recruiter, i.e. on the information about food quality they received, since they had no actual contact with the sugar solution. Disc-laden workers ran, as intuitively expected, slower than outbound workers. The reduction in speed, however, could not be attributed to the effects of the load itself, because workers collecting discs of the same weight, but with added sugar, ran as rapidly as outbound, unladen workers. Workers collecting standardized sugared discs reinforced the chemical trail on their way to the nest. The percentage of trail-layers was higher when workers were recruited to 10% than to 1% sugar solution, even though they collected the same kind of discs at the source. Their evaluation of resource quality, therefore, depended on their motivational state, which was modulated by the information they received during recruitment. Using previously published data on energetics of locomotion in leaf-cutting ants, travel costs of A. lundi workers recruited to sugar solutions of different concentration could be estimated. For workers recruited to the more concentrated solution, both speed and oxygen consumption rate increased by a roughly similar factor. Therefore, although workers ran faster to the high-quality resource, their actual energy investment per trip remained similar to that made by workers recruited to the low-quality resource. It is suggested that the more motivated workers reduced travel time without increasing energy costs during the trip. The adaptive value of these responses seems to be related to a rapid transmission of information about a newly discovered food source.  相似文献   

7.
Foraging leaf-cutting ant workers stridulate while cutting a leaf fragment. Two effects of stridulation have recently been identified: (i) attraction of nestmates to the cutting site, employing substrate-borne stridulatory vibrations as short-range recruitment signals, and (ii) mechanical facilitation of the cut via a vibratome-effect. We asked whether foragers actually stridulate to support their cutting behavior, or whether the mechanical facilitation is an epiphenomenon correlated with the use of stridulation as recruitment signal. To differentiate between the two alternatives, workers of two different Atta species were presented with tender leaves of invariant physical traits, and their motivation to initiate recruitment was manipulated by varying the palatability of the leaves and the starvation of the colony. The lower the palatability of the harvested leaves, the lower the percentage of workers that stridulated while cutting, irrespective of the leaf’s physical features. After intense feeding, no workers were observed to stridulate while cutting tender leaves, and the percentage of stridulating workers increased with deprivation time. The results support the hypothesis that leaf-cutting ant workers stridulate during cutting in order to recruit nestmates, and that the observed mechanical facilitation of stridulation is an epiphenomenon of recruitment communication. Received: 25 January 1996/Accepted after revision: 13 July 1996  相似文献   

8.
9.
De Vries and Biesmeijer described in 1998 an individual-oriented model that simulates the collective foraging behaviour of a colony of honeybees. Here we report how this model has been expanded and show how, through self-organization, three colony-level phenomena can emerge: symmetry breaking, cross inhibition and the equal harvest-rate distribution. Symmetry breaking is the phenomenon that the numbers of foragers visiting two equally profitable food sources will diverge after some time. Cross inhibition is the phenomenon that, by increasing the profitability of one of two equal food sources, the number of foragers visiting the other source will decrease. In some circumstances, the bees foraging on two sources of different profitabilities will be distributed between these sources such that the two average energy harvest rates are equal. We will refer to this phenomenon as the equal harvest-rate distribution. For each of these three phenomena, we show what the necessary behavioural rules to be followed by the individual forager bees are, and what the necessary circumstances are (that is, what values the model parameters should take) in order for these phenomena to arise. It seems that patch size and forager group size largely determine when each of these phenomena will arise. Experimenting with two types of currency, net gain rate and net gain efficiency, revealed that only gain rate may result in an equal harvest-rate distribution of foragers visiting different food sources.  相似文献   

10.
Boyden S  Binkley D  Stape JL 《Ecology》2008,89(10):2850-2859
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.  相似文献   

11.
12.
The benefit of group living is a fundamental question in social evolution. For sociality to evolve, each individual must gain in terms of some fitness component by living in larger groups. However, in social insects, a decrease in per capita success in brood production has been observed in larger groups. While it has been proposed that this decrease could be outweighed by an increase in the predictability of success, a functional basis to this hypothesis has so far never been demonstrated. In this paper, using foraging economics as a functional proxy to colony productivity, we construct a model to explore how number of foragers in the colony interacts with the ecology of resources to influence per capita foraging success and its predictability. The results of the model show that there is no increase in per capita foraging success in larger colonies under most circumstances, though there is an increase in its predictability. We then test the model with empirical data on the foraging behavior of the primitively eusocial wasp, Ropalidia marginata. The consistency between the data and the model suggests that foraging economics could provide a robust functional basis in explaining the relationship between colony size and productivity.  相似文献   

13.
14.
Summary Workers of the ant Formica schaufussi forage as individuals and cooperate in groups to retrieve arthropod prey. In 2 sample years, group-transported prey were on average 6.8 and 4.7 times heavier than individually retrieved items, and the average loading ratios of groups were greater than the loading ratios of single foragers. Retrieval group size was adjusted to prey size, and prey transport velocity for individuals and groups tended to decrease with increasing prey weight. The efficiency of individual and group retrieval, estimated from calculations of the prey delivery rate to the nest (PDR) achieved by each foraging mode, varied as a function of prey size. Individual retrieval maximized PDR at a prey weight of 19.5 mg, and group transport maximized PDR at 190 mg. Although the PDR maxima of an individual in a group and a solitary forager were approximately equal, depending on prey size, group transport may maximize foraging efficiency. Group transport also decreased interference competition from sympatric ant species. Group-transported prey having a greater likelihood of successful retrieval were within the size range of prey that maximized foraging efficiency. Transport group size appeared to be more important in prey defense than in increasing prey transport velocity, suggesting an important role of group size in competitive ability.Offprint requests to: J.F.A. Traniello  相似文献   

15.
Individual and colony-level foraging behaviors were evaluated in response to changes in the quantity or nutritional quality of pollen stored within honeybee (Apis mellifera L.) colonies. Colonies were housed in vertical, three-frame observation hives situated inside a building, with entrances leading to the exterior. Before receiving treatments, all colonies were deprived of pollen for 5 days and pollen foragers were marked. In one treatment group, colony pollen reserves were quantitatively manipulated to a low or high level, either by starving colonies of pollen or by providing them with a fully provisioned frame of pollen composed of mixed species. In another treatment group, pollen reserves were qualitatively manipulated by removing pollen stores from colonies and replacing them with low- or high-protein pollen supplements. After applying treatments, foraging rates were measured four times per day and pollen pellets were collected from experienced and inexperienced foragers to determine their weight, species composition, and protein content. Honeybee colonies responded to decreases in the quantity or quality of pollen reserves by increasing the proportion of pollen foragers in their foraging populations, without increasing the overall foraging rate. Manipulation of pollen stores had no effect on the breadth of floral species collected by colonies, or their preferences for the size or protein content of pollen grains. In addition, treatments had no effect on the weight of pollen loads collected by individual foragers or the number of floral species collected per foraging trip. However, significant changes in foraging behavior were detected in relation to the experience level of foragers. Irrespective of treatment group, inexperienced foragers exerted greater effort by collecting heavier pollen loads and also sampled their floral environment more extensively than experienced foragers. Overall, our results indicate that honeybees respond to deficiencies in the quantity or quality of their pollen reserves by increasing the gross amount of pollen returned to the colony, rather than by specializing in collecting pollen with a greater protein content. Individual pollen foragers appear to be insensitive to the quality of pollen they collect, indicating that colony-level feedback is necessary to regulate the flow of protein to and within the colony. Colonies may respond to changes in the quality of their pollen stores by adjusting the numbers of inexperienced to experienced foragers within their foraging populations.  相似文献   

16.
17.
18.
Summary The foragers in honeybee colonies cooperate by sharing information about rich sources of food. This study examines three hypotheses about the benefits of this cooperation: (H1) it decreases foragers' costs in finding new food sources, (H2) it increases the quality of the food sources located by foragers, and (H3) it increases the ability of a colony's foragers to compete for high-quality food sources. To test each hypothesis, we identified a critical pattern in the foraging process which, if observed, would cast doubt on that hypothesis, and then gathered data to check for these patterns. Our observations do not support the first hypothesis, but do support the second and third. These results, in addition to helping us understand the functional significance of the honeybee's dance language, provide insights into the colonial organization of foraging by honeybees.  相似文献   

19.
The quantitative extent to which the large-scale organized water motion in the surface waters of lakes and reservoirs, known as Langmuir circulation, affects the distribution and settling of algae and other suspended particles is not known and has thus been ignored in conventionally used water-quality models. Since the distribution and settling of these particles is important in determining water quality, this study set out to investigate these effects. Current literature which discusses this problem is reviewed and a mathematical model is developed based on the two-dimensional advection-diffusion mass transport describing the temporal and spatial distribution of suspended particles in a typical Langmuir cell; the Langmuir circulation flow field and turbulent diffusion coefficients are empirically modelled by relating them to environmental parameters.The results show that Langmuir circulation does affect particle distribution and settling. For particles with small sinking speeds, such as the lighter algae, the circulation causes intense mixing, resulting in essentially uniform distribution of particles over the cell (as assumed in the ‘well-mixed compartment model’). For particles with high sinking velocities, however, aggregation can occur, giving rise to significant reduction in sinking loss when compared with that predicted by conventional models. For diatoms, reductions of 6% and higher can occur depending on which conventionally used model is being considered, while for silt and sand particles in a cell of large width-to-depth ratio a reduction of more than 60% is possible.  相似文献   

20.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号