首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We tested the effect of near-future CO2 levels (≈490, 570, 700, and 960 μatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 μatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 μatm CO2 (control). In contrast, juveniles reared at 700 and 960 μatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 μatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 μatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator–prey interactions and commercial fisheries.  相似文献   

2.
Given the threats of greenhouse gas emissions and a changing climate to marine ecosystems, there is an urgent need to better understand the response of not only adult corals, which are particularly sensitive to environmental changes, but also their larvae, whose mechanisms of acclimation to both temperature increases and ocean acidification are not well understood. Brooded larvae from the reef coral Pocillopora damicornis collected from Nanwan Bay, Southern Taiwan, were exposed to ambient or elevated temperature (25 or 29 °C) and pCO2 (415 or 635 μatm) in a factorial experiment for 9 days, and a variety of physiological and molecular parameters were measured. Respiration and rubisco protein expression decreased in larvae exposed to elevated temperature, while those incubated at high pCO2 were larger in size. Collectively, these findings highlight the complex metabolic and molecular responses of this life history stage and the need to integrate our understanding across multiple levels of biological organization. Our results also suggest that for this pocilloporid larval life stage, the impacts of elevated temperature are likely a greater threat under near-future predictions for climate change than ocean acidification.  相似文献   

3.
Rising dissolved pCO2 is a mounting threat to coral reef ecosystems. While the biological and physiological impacts of increased pCO2 are well documented for many hermatypic corals, the potential effects on bioerosion processes remain largely unknown. Increases in pCO2 are likely to modify the direct interactions between corals and bioeroders, such as excavating sponges, with broad implications for the balance between biologically mediated deposition and erosion of carbonate in reef communities. This study investigated the effects of three levels of CO2 (present-day, mid-century and end-of-century projections) on the direct interaction between a bioeroding sponge, Cliona varians, and a Caribbean coral, Porites furcata. Increased pCO2 concentrations had no effect on the attachment rates of C. varians to the corals, and we observed no significant impact of pCO2 on the survival of either the coral or sponges. However, exposure to end-of-century levels of CO2-dosing (~750 μatm) reduced calcification in P. furcata and led to a significant increase in sponge-mediated erosion of P. furcata. These findings demonstrate that pCO2 can enhance erosional efficiency without impacting survival or competitive vigor in these two species. While few studies have considered the influence of pCO2 on the competitive outcomes of interactions between corals and other reef organisms, our study suggests that assessing the impacts of changing pCO2 on species interactions is crucial to adequately predict ecosystem-level responses in the future.  相似文献   

4.
Surprisingly little is known about potential effects of ocean acidification on krill of the Northern Hemisphere as ecologically very important food web component. Sub-adult individuals of the northern Atlantic krill species Nyctiphanes couchii (caught at Austevoll near Bergen, Norway, in January 2013) were exposed in the laboratory to four different levels of pCO2 (430, 800, 1,100, and 1,700 µatm) for 5 weeks in order to assess potential changes in a set of biological response variables. Survival decreased and the frequency of moulting-related deaths increased with increasing pCO2. Survival was considerably reduced at relatively high pCO2 of 1,700 µatm and tended to be negatively affected at 1,100 µatm pCO2. However, the experimental results show no significant effects of pCO2 on inter-moult period and growth at pCO2 levels below 1,100 µatm. No differences in length measurements of the carapace and uropod were observed across pCO2 levels, indicating no effect of changing carbonate chemistry on the morphology of those calciferous parts of the exoskeleton. The results suggest that sub-adult N. couchii may not suffer dramatically from predicted near-future changes in pCO2. However, potential detrimental effects on the moulting process and associated higher mortality at 1,100 µatm pCO2 cannot be excluded. Further experiments are needed in order to investigate whether early life stages of N. couchii show a different sensitivity to elevated sea water pCO2 and whether those results are transferable to other krill species of the Northern Hemisphere.  相似文献   

5.
We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24 °C, 700–2,140 μatm) for 8 weeks in a batch culture and at four pCO2 levels (20 °C, 620–2,870 μatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 μatm pCO2 as is already naturally experienced by the investigated barnacle population.  相似文献   

6.
To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179′N, 120°44.85′E), were exposed to ambient (419–470 μatm) and high (604–742 μatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality. The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.  相似文献   

7.
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7′N, 12°1.1′W) and spawned in July 2011. Larvae were exposed to Ambient (400 μatm CO2), MidCO2 (700 μatm), or HighCO2 (1,000 μatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.  相似文献   

8.
Future ocean acidification will be amplified by hypoxia in coastal habitats   总被引:1,自引:0,他引:1  
Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.  相似文献   

9.
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.  相似文献   

10.
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 μatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 μatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 μatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 μatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.  相似文献   

11.
The impact of elevated CO2 and temperature on photosynthesis and calcification in the symbiont-bearing benthic foraminifer Marginopora vertebralis was studied. Individual specimens of M. vertebralis were collected from Heron Island on the southern Great Barrier Reef (Australia). They were maintained for 5 weeks at different temperatures (28, 32 °C) and pCO2 (400, 1,000 µatm) levels spanning a range of current and future climate-change scenarios. The photosynthetic capacity of M. vertebralis was measured with O2 microsensors and a pulse-amplitude-modulated chlorophyll (Chl) fluorometer, in combination with estimates of Chl a and Chl c 2 concentrations and calcification rates. After 5 weeks, control specimens remained unaltered for all parameters. Chlorophyll a concentrations significantly decreased in the specimens at 1,000 µatm CO2 for both temperatures, while no change in Chl c 2 concentration was observed. Photoinhibition was observed under elevated CO2 and temperature, with a 70–80 % decrease in the maximum quantum yield of PSII. There was no net O2 production at elevated temperatures in both CO2 treatments as compared to the control temperature, supporting that temperature has more impact on photosynthesis and O2 flux than changes in ambient CO2. Photosynthetic pigment loss and a decrease in photochemical efficiency are thus likely to occur with increased temperature. The elevated CO2 and high temperature treatment also lead to a reduction in calcification rate (from +0.1 to >?0.1 % day?1). Thus, both calcification and photosynthesis of the major sediment-producing foraminifer M. vertebralis appears highly vulnerable to elevated temperature and ocean acidification scenarios predicted in climate-change models.  相似文献   

12.
To test whether coral planulae recruit randomly to different coral reef habitats or have specific substratum preferences, the settling behavior of planulae from two shallow water coral species from Pago Bay, Guam (13°25.02N, 144°47.30E) were examined in the laboratory in June and July of 1995. Goniastrea retiformis is generally restricted to the shallow reef front (<10 m depth) in areas dominated by crustose coralline algae (CCA), while Stylaraea punctata is abundant on inner reef flats were CCA coverage is low and sand and carbonate rubble covered by biofilms is common. When presented with four substrata (1) carbonate rock scrubbed free of biofilm and dried as a control, (2) the CCA Hydrolithon reinboldii, (3) the CCA Peyssonelia sp., and (4) naturally conditioned carbonate rubble covered by a biofilm, G. retiformis larvae showed a significant preference for H. reinboldii, and S. punctata larvae for the carbonate biofilm treatment. The preference shown by S. punctata larvae for biofilmed surfaces did not diminish with increasing larval age up to 11 days. These results suggest that the larvae of both species are capable of habitat selection, and that the preferred substrata among those tested bears a relationship to the habitats in which adult colonies were found. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

14.
Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55°03′N, 8°44′E) and offspring to ambient (~400 µatm) and elevated (~1,000 µatm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects.  相似文献   

15.
The present study (Ishigaki Island, Japan) explored the distance of transmission of chemical cues emitted by live versus dead coral reefs (Exp. 1: High performance liquid chromatography (HPLC) analyses with water sampling station at 0, 1, and 2 km away from the reef) and the potential attraction of these chemical cues by larval fish, crustaceans, and cephalopods (Exp. 2: choice flume experiment conducted on 54 Chromis viridis larvae, 52 Palaemonidae sp larvae, and 16 Sepia latimanus larvae). In the experiment 1, HPLC analyses highlighted that the live coral reef (and not the dead coral reef) produced different and distinct molecules, and some of these molecules could be transported to a distance of at least 2 km from the reef with a reduction of concentration by 14–17-fold. In the experiment 2, C. viridis, Palaemonidae sp, and S. latimanus larvae were significantly attracted by chemical cues from a live coral reef (sampling station: 0 km), but not from a dead coral reef. However, only C. viridis larvae detected the chemical cues until 1 km away from the live coral reef. Overall, our study showed that chemical cues emitted by a live coral reef were transported farthest away in the ocean (at least 2 km) compared to those from a dead coral reef and that fish larvae could detect these cues until 1 km. These results support the assumption of a larval settlement ineffective in degraded coral reefs, which will assist conservationists and reef managers concerned with maintaining biodiversity on reefs that are becoming increasingly degraded.  相似文献   

16.
S. Uthicke  N. Soars  S. Foo  M. Byrne 《Marine Biology》2013,160(8):1913-1926
Effects of acclimation to projected near-future ocean acidification (OA) conditions on physiology, reproduction and development were investigated in the tropical sea urchin Echinometra mathaei. Following 6 weeks in control or one of the three elevated pCO2 (pHNIST 7.5–8.1; pCO2 ~485–1,770 μatm) conditions, adult urchins exhibited a slight decline of growth in low pH treatments and moderately reduced respiration at intermediate levels. At 7 weeks, gametes from adults were used to produce larvae that were reared in their respective parental treatments. To assess whether larvae from acclimated parents are more resilient to elevated pCO2 than those not acclimated, larvae from control animals were also reared in the elevated pCO2 treatments. There was no difference in female ‘spawnability’ and oocyte size between treatments, but male spawning ability was reduced in increased pCO2 conditions. In elevated pCO2 treatments, the percentage of normal larvae and larval size decreased in the progeny of control- and elevated pCO2-acclimated parents, and arm asymmetry increased. Thus, acclimation of the parents did not make the progeny more resilient or sensitive to OA effects. Negative effects of increased pCO2 on reproduction and development may impact on recruitment and population maintenance of this species.  相似文献   

17.
Since the industrial revolution, [CO2]atm has increased from 280 μatm to levels now exceeding 380 μatm and is expected to rise to 730–1,020 μatm by the end of this century. The consequent changes in the ocean’s chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (ΔpH 0.5; 0.16 % CO2, ~1,600 μatm) significantly (p < 0.05) reduced oxygen consumption rate up to 17 %. Moreover, the swimming duration and orientation frequency also decreased with increasing pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.  相似文献   

18.
Yohei Nakamura 《Marine Biology》2010,157(11):2397-2406
An extensive seagrass bed on a fringing coral reef at Amitori Bay (southern Ryukyu Islands) disappeared completely in 2009 after a typhoon. Seagrass bed loss had a significant negative influence on not only seagrass bed residents but also commercially important coral reef fishes that utilize seagrass beds as nurseries or feeding grounds. With seagrass bed loss, mean species’ richness and densities of overall seagrass bed fishes per transect decreased by more than 75 and 85%, respectively. Most of the affected fishes were benthivores, piscivores, detritivores, and herbivores. Of 21 dominant species, 13 disappeared completely and 4 showed severe reductions in densities following seagrass bed loss, whereas the densities of 4 bottom-dwelling gobies did not change significantly. Thus, this study demonstrated that most seagrass bed fishes lack the ability to adapt to seagrass habitat loss, suggesting that increasing global seagrass loss will cause serious reductions in seagrass-associated fishes and fishery resources.  相似文献   

19.
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid–base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 μatm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid–base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid–base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.  相似文献   

20.
To estimate the impact of CO2-driven ocean acidification on the early life stages of gastropods, the effects of increased partial pressure of seawater carbon dioxide (pCO2) (800–2,000 μatm) on the early developmental stages and larval shell length of the commercially important gastropod, the horned turban snail, Turbo cornutus were investigated. Increase in experimental seawater pCO2 had an increasingly negative impact on the early developmental rate; the proportion of embryos or larvae displaying retarded development increased at higher pCO2. The proportion of embryos that developed to the 4-cell stage at 2 h after fertilization decreased linearly with increasing pCO2. At ~1,000 μatm pCO2, retarded development was observed in ~50 % of larvae. No embryos developed to the 4-cell stage at 2,000 μatm pCO2 within 2 h of fertilization. A similar trend continued until 24–26 h after fertilization; the proportion of larvae attaining veliger stage by 24–26 h also decreased with increasing pCO2. The shell length of T. cornutus veligers decreased gradually as seawater pCO2 increased, but markedly decreased in seawater under nearly unsaturated and unsaturated conditions (≤1.04) of the aragonite saturation state (Ω aragonite). The results indicate that increased pCO2 seawater has a progressive and acute effect on embryonic and larval T. cornutus, and imply that the extended early developmental period and/or the downsized larval shell produced by ocean acidification will have a negative impact on survival, settlement and recruitment well into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号