首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems.  相似文献   

2.
土壤微生物对大气CO2浓度升高的响应   总被引:18,自引:2,他引:18  
罗艳 《生态环境》2003,12(3):357-360
土壤微生物是生态系统的重要组成部分,了解它对大气CO2浓度升高的响应,是全面评价大气CO2浓度对陆地生态系统影响的关键。文章主要从土壤微生物呼吸和生物量两个方面总结了大气CO2浓度升高时土壤微生物的反应,结果发现,(1)在目前实验室进行的大多数研究中,随着CO2浓度升高,土壤微生物的呼吸速率加快了。这意味着随着CO2的增多,植物生长加快,进而又使得进入土壤的C质量分数增大;这些额外增加的底物被土壤微生物的代谢活动所利用。(2)土壤微生物生物量则存在着很大的变异性(变异系数为193%),这可能与植物种类以及生活型的差异有关,也可能是进入土壤的底物的性质改变的结果。但是目前仍有许多问题未能解决,需要加强以下几个方面的研究:对土壤微生物活动有限制作用的植物有机底物在CO2浓度升高时输入量的变化状况,定量分析这一动态变化过程;在生态系统各个水平上土壤微生物的反应;在其他全球变化因子综合作用下,CO2浓度升高对土壤微生物的影响。  相似文献   

3.
大气CO2体积分数升高对植物N素吸收的影响   总被引:3,自引:0,他引:3  
庞静  朱建国  谢祖彬 《生态环境》2005,14(3):429-433
从影响植物N素吸收的因素来看,大气CO2体积分数升高条件下植物净光合作用增强,碳同化产物增多,利于改善N素吸收的能量和物质基础:植物根系生长增强,生物量增多且空间分布加大,有利于N素吸收;但土壤有效N供应能力的变化存在增强和减弱两种观点。从植物N素吸收的实际情况来看,大气CO2体积分数升高条件下植物N吸收总量并末增加,植物体内N质量分数普遍降低,某些种类植物N吸收形态也发生了改变。因此要阐明大气CO2体积分数升高对植物N素吸收的影响机制,必须探明土壤有效N供应能力的变化:CO2体积分数升高条件下N矿化作用是否增强,微生物和植物间是否存在对有效N的竞争,此外,CO2体积分数升高条件下植物根系形态特征变化和N素吸收(包括主动和被动吸收)的生理机制及其与环境因素的关系也值得进一步研究。  相似文献   

4.
农田土壤呼吸对大气CO2浓度升高的响应   总被引:2,自引:1,他引:2  
大气CO2浓度急剧升高引起的全球气候变暖是人们关注的环境问题之一.随着气候变化对全球生态环境的影响日益增大,全球碳循环研究已经成为各国科学家研究的热点之一.模拟大气CO2浓度升高试验技术先后经历了人工气候室、开顶式气室、FACE技术(Free Air carbon dioxjde eariclament)阶段,FACE技术因其无限接近自然条件而成为研究大气CO2浓度增加对整个生态系统影响的最理想试验平台.土壤呼吸是陆地生态系统碳循环的重要环节,农田生态系统是陆地生态系统的重要组成.研究农田生态系统的土壤呼吸对大气CO2浓度增加的响应是预测和评价农田系统乃至整个陆地生态系统土壤碳周转和碳收支的重要前提与基础.文章根据现有研究成果.阐述了模拟大气CO2浓度升高的试验技术,比较了农田土壤呼吸的测定方法,总结了以FACE研究成果为主的高CO2浓度条件下农田土壤呼吸、不同地下来源贡献及环境因子影响,提出了进一步研究的方向,以期为全球气候变化背景下的农田土壤呼吸和碳固定及全球碳循环研究提供帮助.  相似文献   

5.
植物地上部分对大气CO2浓度升高的响应   总被引:8,自引:2,他引:8  
大气CO2浓度升高对植物的影响,主要是促进了植物生长早期的光合作用,同时也增加了对其他资源的需求;植物的光合作用也存在对高CO2浓度的适应,不会一直维持较高的光合水平,而且植物的呼吸作用也可能会增加;大气CO2浓度升高和其他环境条件,如水分,温度和光照等对植物生长和产量存在相互作用,可以部分弥补条件的不足,也影响作物和杂草的竞争关系;自然植物群落由于有很高的多样性和复杂性,对其研究应该在生物群落水平上进行,用外推法回到植物水平,而不是相反,而且自然物种间的竞争是激烈的,CO2浓度升高或其他因素带来的任何改善,都会明显地改变竞争平衡。  相似文献   

6.
大气CO2浓度升高对植物光合作用的影响   总被引:16,自引:0,他引:16  
赵天宏  王美玉  张巍巍  张鑫 《生态环境》2006,15(5):1096-1100
大气CO2浓度不断升高以及由此带来的温室效应已成为全球变化研究的热点问题之一。CO2作为植物光合作用的底物,其浓度升高必然对植物的光合作用产生影响。大气CO2浓度升高对植物光合作用的影响主要体现在:对不同植物的光合色素含量均有影响,但结果有所差异;短期处理光合速率提高,而长期处理则可能出现光合适应,其适应机理目前尚存在分歧;不同光合类型植物的叶片形态结构有不同的响应结果,叶绿体超微结构也明显变化;生物量和产量提高。此外,CO2浓度升高与其它环境因子相互作用对植物的光合作用也具有重要影响。大气CO2浓度升高条件下对木本植物的研究、在分子水平上的深入研究以及在不同环境下的研究将成为未来研究的主要方向。  相似文献   

7.
Stover DB  Day LF  Butnor JR  Drake BG 《Ecology》2007,88(5):1328-1334
Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarse-root biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR propagates electromagnetic waves directly into the soil and reflects a portion of the energy when a buried object is contacted. In our study, we utilized a 1500 MHz antenna to establish correlations between GPR signals and root biomass. A significant relationship was found between GPR signal reflectance and biomass (R2 = 0.68). This correlation was applied to multiple GPR scans taken from each open-top chamber (elevated and ambient CO2). Our results showed that plots receiving elevated CO2 had significantly (P = 0.049) greater coarse-root biomass compared to ambient plots, suggesting that coarse roots may play a large role in carbon sequestration in scrub-oak ecosystems. This nondestructive method holds much promise for rapid and repeatable quantification of coarse roots, which are currently the most elusive aspect of long-term belowground studies.  相似文献   

8.
二氧化碳浓度升高对植物入侵的影响   总被引:1,自引:0,他引:1  
从入侵植物和入侵植物群落两个方面,综述了大气二氧化碳浓度升高对植物入侵的影响。二氧化碳浓度升高,可以增加C3植物的入侵性,提高入侵植物的生物量、资源利用率以及繁殖能力,直接影响植物入侵;还可以通过改变土壤水分、氮循环、干扰体系等其它环境因子间接地影响植物入侵。此外,二氧化碳浓度升高,对入侵群落的初级生产量、组成与结构以及群落动态产生重要影响,改变群落的可入侵性。今后应当着重从群落水平,结合其它全球变化因子的共同作用研究二氧化碳浓度升高对植物入侵的影响,同时深入探讨其作用机制以及不同植物类群对二氧化碳的响应,为入侵种的预防和控制提供理论指导。  相似文献   

9.
大气CO2浓度增高对农田土壤硝化活性的影响   总被引:6,自引:0,他引:6  
利用中国唯一的FACE(Free-Air Carbon dioxide Enrichment,开放式空气CO2浓度增高)平台,研究大气CO2浓度增高对农田土壤硝化活性的影响.位于无锡的中国稻麦轮作农田生态系统FACE试验平台于2001年6月开始运行,设有FACE与Ambient(普通空气对照)2个处理,FACE区CO2浓度比Ambient区高200 μmol·mol-1,每个处理含低氮与常氮2个氮肥水平.在轮作水稻和小麦各3季之后,发现大气CO2浓度增高下,常氮水平上土壤的NO3--N质量分数降低,NH4+-N质量分数增高;而低氮水平上土壤的NO3--N质量分数增高,NH4+-N质量分数没有显著差异.然后分别在土壤样品中加入NH4+-N,好气培养42 d后通过测定土壤中的NO3--N、NO2--N总质量分数来研究土壤的硝化活性.结果显示,不管在CO2浓度增高下还是对照条件下,增加氮肥施用量均增强了土壤的硝化活性;且与对照相比,大气CO2浓度增高在常氮水平上降低了土壤的硝化活性,在低氮水平上却增强了土壤的硝化活性,说明大气CO2浓度增高对农田土壤硝化活性的影响与N肥供应水平有关.  相似文献   

10.
Cleland EE  Peters HA  Mooney HA  Field CB 《Ecology》2006,87(3):686-694
In this study, the influence of elevated carbon dioxide (CO2) and nitrogen (N) deposition on gastropod herbivory was investigated for six annual species in a California annual grassland community. These experimentally simulated global changes increased availability of important resources for plant growth, leading to the hypothesis that species with the most positive growth and foliar nutrient responses would experience the greatest increase in herbivory. Counter to the expectations, shifts in tissue N and growth rates caused by N deposition did not predict shifts in herbivore consumption rates. N deposition increased seedling N concentrations and growth rates but did not increase herbivore consumption overall, or for any individual species. Elevated CO2 did not influence growth rates nor have a statistically significant influence on seedling N concentrations. Elevated CO2 at ambient N levels caused a decline in the number of seedlings consumed, but the interaction between CO2 and N addition differed among species. The results of this study indicate that shifting patterns of herbivory will likely influence species composition as environmental conditions change in the future; however, a simple trade-off between shifting growth rates and palatability is not evident.  相似文献   

11.
Based on a series of short-term incubations involving the marine diatom Chaetoceros simplex (Bbsm), precultured in NH 4 + -, NO 3 - -and urea-limited continuous cultures at several dilution rates, we found that both the short-term specific rate of 14CO2 uptake and the amount of CO2 fixed after 8- and 16-min incubations were unaffected by enrichment with NH 4 + , urea, or NO 3 - when NH 4 + or urea were the preconditioning forms of N, but were slightly suppressed when the cells were first grown on NO 3 - . Similar enrichments in the dark, however, led to significant CO2 uptake under all conditions of NH 4 + enrichment and to similarly enhanced CO2 uptake, but only at high growth rates, when urea was the source of enrichment nitrogen. Our light results are contrary to some contemporary findings, but there does seem to be agreement that photosynthetic rates of rapidly growing phytoplankton will not be affected by exposure to pulses of nitrogen. Enhanced dark uptake, in contrast, appears to be characteristic of phytoplankton under all degrees of N limitation, and, as such, may be useful as an “all or nothing” index of the nitrogen status of natural waters. There is some indication that the index may be useful in determining both the form of and the degree of N limitation as well.  相似文献   

12.
Changes in seawater carbonate chemistry that accompany ongoing ocean acidification have been found to affect calcification processes in many marine invertebrates. In contrast to the response of most invertebrates, calcification rates increase in the cephalopod Sepia officinalis during long-term exposure to elevated seawater pCO2. The present trial investigated structural changes in the cuttlebones of S. officinalis calcified during 6 weeks of exposure to 615 Pa CO2. Cuttlebone mass increased sevenfold over the course of the growth trail, reaching a mean value of 0.71 ± 0.15 g. Depending on cuttlefish size (mantle lengths 44–56 mm), cuttlebones of CO2-incubated individuals accreted 22–55% more CaCO3 compared to controls at 64 Pa CO2. However, the height of the CO2-exposed cuttlebones was reduced. A decrease in spacing of the cuttlebone lamellae, from 384 ± 26 to 195 ± 38 μm, accounted for the height reduction The greater CaCO3 content of the CO2-incubated cuttlebones can be attributed to an increase in thickness of the lamellar and pillar walls. Particularly, pillar thickness increased from 2.6 ± 0.6 to 4.9 ± 2.2 μm. Interestingly, the incorporation of non-acid-soluble organic matrix (chitin) in the cuttlebones of CO2-exposed individuals was reduced by 30% on average. The apparent robustness of calcification processes in S. officinalis, and other powerful ion regulators such as decapod cructaceans, during exposure to elevated pCO2 is predicated to be closely connected to the increased extracellular [HCO3 ] maintained by these organisms to compensate extracellular pH. The potential negative impact of increased calcification in the cuttlebone of S. officinalis is discussed with regard to its function as a lightweight and highly porous buoyancy regulation device. Further studies working with lower seawater pCO2 values are necessary to evaluate if the observed phenomenon is of ecological relevance.  相似文献   

13.
近年来大气中CO2体积分数急剧上升,对植物的光合作用、呼吸作用、水分利用等产生重要的影响.文章利用开顶式气室(OTC)研究了大气CO2体积分数升高条件下玉米(Zea mays L.)叶片抗氧化能力的变化.结果表明,整个生长季内,与对照相比,在高体积分数CO2(550×10-6)条件下,玉米叶片的相对电导率和MDA含量下降,说明膜脂过氧化程度有所降低;O2-·产生速率和H2O2含量与对照相比呈下降趋势并在灌浆期呈显著性差异(P<0.05),但是随着熏蒸时间的延长,高体积分数CO2处理的植株O2-·产生速率和H2O2含量都逐渐降低,这说明高体积分数CO2下活性氧产生减少;SOD、POD、CAT的活性与对照相比明显升高并达到显著(P<0.05)或极显著水平(P<0.01);百粒质量、穗粒数和穗粒质量均高于对照,说明CO2体积分数升高有利于提高玉米的抗氧化能力,促进植物生长.  相似文献   

14.
Ocean acidification and global warming are occurring concomitantly, yet few studies have investigated how organisms will respond to increases in both temperature and CO2. Intertidal microcosms were used to examine growth, shell mineralogy and survival of two intertidal barnacle post-larvae, Semibalanus balanoides and Elminius modestus, at two temperatures (14 and 19°C) and two CO2 concentrations (380 and 1,000 ppm), fed with a mixed diatom-flagellate diet at 15,000 cells ml−1 with flow rate of 10 ml−1 min−1. Control growth rates, using operculum diameter, were 14 ± 8 μm day−1 and 6 ± 2 μm day−1 for S. balanoides and E. modestus, respectively. Subtle, but significant decreases in E. modestus growth rate were observed in high CO2 but there were no impacts on shell calcium content and survival by either elevated temperature or CO2. S. balanoides exhibited no clear alterations in growth rate but did show a large reduction in shell calcium content and survival under elevated temperature and CO2. These results suggest that a decrease by 0.4 pH(NBS) units alone would not be sufficient to directly impact the survival of barnacles during the first month post-settlement. However, in conjunction with a 4–5°C increase in temperature, it appears that significant changes to the biology of these organisms will ensue.  相似文献   

15.
Johnson DW 《Ecology》2006,87(1):64-75
Field studies have shown that elevated CO2 can cause increased forest growth over the short term (<6 years) even in the face of N limitation. This is facilitated to some degree by greater biomass production per unit N uptake (lower tissue N concentrations), but more often than not, N uptake is increased with elevated CO2 as well. Some studies also show that N sequestration in the forest floor is increased with elevated CO2. These findings raise the questions of where the "extra" N comes from and how long such growth increases can continue without being truncated by progressive N limitation (PNL). This paper reviews some of the early nutrient cycling literature that describes PNL during forest stand development and attempts to use this information, along with recent developments in soil N research, to put the issue of PNL with elevated CO2 into perspective. Some of the early studies indicated that trees can effectively "mine" N from soils over the long term, and more recent developments in soil N cycling research suggest mechanisms by which this might have occurred. However, both the early nutrient cycling literature and more recent simulation modeling suggest that PNL will at some point truncate the observed increases in growth and nutrient uptake with elevated CO2, unless external inputs of N are increased by either N fixation or atmospheric deposition.  相似文献   

16.
Response of bacterial communities to short-term pyrene exposure in red soil   总被引:1,自引:0,他引:1  
Pyrene, a representative polycyclic aromatic hydrocarbon (PAH) compound produced mainly from incomplete combustion of fossil fuels, is hazardous to ecosystem health. However, long-term exposure studies did not detect any significant effects of pyrene on soil microorganism. In this study, short-term microcosm experiments were conducted to identify the immediate effect of pyrene on soil bacterial communities. A freshly-collected pristine red soil was spiked with pyrene at 0, 10, 100, 200, and 500 mg·kg-1 and incubated for one day and seven days. The bacterial communities in the incubated soils were analyzed using 16S rRNA sequencing and terminal restriction fragment length polymorphism (T-RFLP) methods. The results revealed high bacterial diversity in both unspiked and pyrene-spiked soils. Only at the highest pyrene-spiking rate of 500 mg·kg-1, two minor bacteria groups of the identified 14 most abundant bacteria groups were completely suppressed. Short-term exposure to pyrene resulted in dominance of Proteobacteria in soil, followed by Acidobacteria, Firmutes, and Bacteroidetes. Our findings showed that bacterial community structure did respond to the presence of pyrene but recovered rapidly from the perturbation. The intensity of impact and the rate of recovery showed some pyrene dosage-dependent trends. Our results revealed that different levels of pyrene may affect the bacterial community structure by suppressing or selecting certain groups of bacteria. It was also found that the bacterial community was most susceptible to pyrene within one day of the chemical addition.  相似文献   

17.
大气CO2体积分数升高对油松叶片光合生理特性的影响   总被引:2,自引:0,他引:2  
近年来大气CO2体积分数不断升高,虽然CO2体积分数升高对植物影响的研究已取得一定进展,但目前针对城市森林树种的相关研究甚少。利用开顶式气室研究了大气CO2体积分数升高对沈阳市城市森林主要树种油松(PinustabulaefomisCarr.)光合生理特性的影响。结果表明,整个生长季内,与对照相比,在大气CO2体积分数为700×10-6条件下,油松叶片的Chla、Chlb及Chl(a b)质量分数提高,Chla/Chlb值降低,而类胡萝卜素质量分数则呈现出降低—升高—降低的趋势;整个处理期间,净光合速率显著提高,提高幅度为23.68%~133.18%(P<0.05或P<0.01);可溶性蛋白质量分数增加,并随着处理时间延长增加幅度增大,在通气40d时就达到差异极显著水平(P<0.01);大气CO2体积分数升高促进了油松叶片中可溶性糖、淀粉的积累;实验中并未观察到光合下调现象。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号