首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary To test whether the initial night sky orientation response of migratory pied flycatchers (Ficedula hypoleuca) is calibrated from the ambient magnetic field experienced by birds during their first summer, three groups of pied flycatchers were hand-reared and then held under different magnetic field conditions during the course of the summer. All groups were held outdoors and given full exposure to the day and night sky. One group was exposed to the local earth's magnetic field. A second group was exposed to a magnetic field of local earth strength, local earth inclination shifted 105° counter-clockwise relative to the local earth's field. The last group was exposed to a vertical, and thus nondirectional magnetic field.In autumn, the birds were tested for their orientation under the night sky in the absence of a directional magnetic field. When tested, all three groups were oriented with mean directions varying from south to southeast. No statistical differences emerged in any between group comparisons. The data indicate that earth's magnetism does not serve as a calibrating reference in the development of a pied flycatcher's initial orientation response to the night sky.  相似文献   

2.
Experiments were designed to determine whether anemotaxis shown by the terrestrial hermit crab Coenobita rugosus H. Milne Edwards is (i) an orientational strategy leading the crabs to sea or (ii) a strategy improving rectilinear flight. In an arena with uniform landscape, hermit crabs from different beaches of the Aldabra atoll orientated during daylight in the direction of the sea of their own beach; this orientation was only slightly affected by wind direction. Under artificial wind conditions, at night, all hermit crabs displayed positive anemotaxis, independent of the orientation of the home beach, thus leaving little support for the first hypothesis. During the day, with the sea and beach both visible, all the hermit crabs on the beach moved landwards irrespective of wind and home beach direction.  相似文献   

3.
Summary If savannah sparrows, (Passerculus sandwichensis), a North American night migrant, select a migratory heading based upon the setting sun, a shift in the position of that cue should produce a predictable shift in the migrant's nocturnal orientation. I tested this hypothesis by shifting the sunst position with mirrors and by recording the bird's orientation in Emlen funnels. The control group displayed directionality appropriate for spring migration (=342°). The mean heading of experimentals (=272°), which were exposed to a cue-shifted situation, was in the expected westerly direction relative to the control mean (P<0.05, V-test). The setting sun appears to be a sufficient source of directional information for this avian migrant.  相似文献   

4.
An exceptionally large midwater trawl (50 m2 mouth area) with 5 opening and closing codends was towed horizontally in the lower mesopelagic zone at depths of 500, 650, 800 and 1000 m off Oregon (USA) from 1–6 September, 1978. In comparison to more conventional trawls, ours collected more fish, including rare species and large individuals of common species. Comparison of collections made by day and by night revealed that 12 of the 15 most common species probably migrated vertically. Bathylagus milleri evidently migrates from 650 m during the day to 500 m at night. Cyclothone acclinidens and C. atraria were more abundant by night than by day at 800 m, possibly due to an upward migration from deeper depths at night. C. pseudopallida, C. signata, Chauliodus macouni, Tactostoma macropus and Stenobrachius leucopsarus were more abundant by day than by night at 500 m, suggesting that they migrated out of this depth horizon at night. Lampanyctus regalis, and large individuals of B. pacificus were more abundant by night than by day at 500 m, possibly because they migrated upward from near 650 m. Many species exhibited trends of increasing or decreasing size with depth, and several species showed changes in migratory behavior with size. For example, only small (<240 mm) T. macropus migrated vertically, whereas only large (>110 mm) B. pacificus appeared to migrate. Depths of maximum abundance of congeneric species were usually separated. B. milleri and B. pacificus had similar distributions by day, but the former was shallower at night. S. leucopsarus tended to live shallower than S. nannochir both day and night. Congeners always occurring at the same depth were Cyclothone pseudopallida and C. signata (both most abundant at 500 m) and C. acclinidens and C. atraria (both most abundant at 800 m).  相似文献   

5.
The sinking rates of fecal matter from 7 southern California midwater fish species were investigated. Feces were obtained from 162 specimens of Stenobrachius leucopsarus, Triphoturus mexicanus, Leuroglossus stilbius, Lampanyctus ritteri, Argyropelecus affinis and Parvilux ingens, which were collected in the Santa Barbara and San Clemente Basins between 1977 and 1979. In addition, feces obtained from 6 laboratory-maintained specimens of the midwater zoarcid Melanostigma pammelas were used for repeated sinking-rate measurements. The mean of the measured sinking rates for all species was 1.19 cm s-1 (1 028 m d-1), which is much higher than the known descent rates of euphausiid and copepod fecal pellets and of most other particulate organic detritus. Dissolution characteristics were also investigated for fecal matter from 4 species collected by the same series of net hauls: S. leucopsarus, T. mexicanus, A. affinis, and Sternoptyx obscura. The release of dissolved organic compounds from this material is low and does not represent a significant output during the relatively short time required to sink through the water column. These findings suggest that midwater fish fecal matter may represent a major source of organic transfer between the pelagic community and the benthos.  相似文献   

6.
The Bay of Aiguillon is a national French Nature Reserve of great importance for birds. Recently, the managers of the Reserve (ONCFS-LPO) paid attention to the influence of saltmarshes management on the nursery function for fish feeding in creeks at high tide. A study carried out from March to July 2012 aimed to evaluate the use of saltmarshes by fish juvenile fraction according to the mowing intensity in salt marshes surrounding creeks: ceased, irregular or annual mowing. This community approach was completed by a focus on the European sea bass Dicentrarchus labrax individual diet, vacuity index and growth, and the biomass of a main potential prey (the amphipod Orchestia gammarella). Whatever the mowing intensity, the juvenile fraction was very high for the main species, which were the grey mullet Liza ramada, the European sea bass, undetermined clupeid and the European flounder Platichthys flesus. Adult and subadult for these species were anecdotic or totally absent. Despite very different biomasses of amphipods between mown and natural sites, vacuity index, prey composition and their relative abundance in the diet of European sea bass juveniles were little different, contrary to their hypothetical growth (i.e. when assuming site fidelity), which appeared higher in non-mown site. The low distance between sampling sites could allow fish exchange over time between optimal and suboptimal creeks to feed on, as a hypothesis to explain such results. Because mowing was subsidized by European Union (EU) to favour open habitats for geese and maintain an economic activity, indirect impacts on nursery for fish called into question the appropriateness of such agro-environmental measure on natural habitats, and related fish nursery function.  相似文献   

7.
The blacksmith Chromis punctipinnis, an abundant planktivorous damselfish off southern California, USA, shelters along rocky reefs at night. While sheltered, blacksmiths excrete ammonium that could, in turn, be utilized by nearby benthic macrophytes. Laboratory experiments during the summer and fall of 1983 and 1984 indicate that ammonium excretion at night ranged from 18.1 mol h-1 by a 8.5 g (dry) fish, to 89.1 mol h-1 by a 27.3 g fish; excretion rates generally declined throughout the night. Field measurements at night indicate that ammonium concentrations were significantly higher in rocky crevices occupied by blacksmiths than in unoccupied shelters, and the ammonium level in one shelter dropped after a blacksmith was experimentally removed. Young kelp plants (Macrocystis pyrifera) are capable of taking up ammonium at night. Ammonium levels in chambers containing both a blacksmith and a young kelp plant were significantly lower than in chambers containing only a fish, and ammonium levels dropped in ammoniumspiked chambers that contained kelp plants. Nighttime ammonium uptake rates by young kelp plants, which averaged 1.6 mol g-1 (dry) h-1, were only slightly lower than those during the day. Daytime excretion by blacksmiths occasionally results in elevated ammonium levels in the water column. On two of six days, ammonium concentrations in midwater foraging aggregations were slightly but significantly higher than in upcurrent controls; since blacksmiths typically aggregate at the incurrent margin of kelp beds, the ammonium is swept downcurrent and may be utilized by large M. pyrifera that extend through the water column. Thus, the activities of blacksmiths may results in the importation of extrinsic, inorganic nitrogen to primary producers on temperate reefs.  相似文献   

8.
The means of detecting downwelling light for counterillumination in several midwater animals has been examined. Eyes and extraocular photoreceptors (drosal photosensitive vesicles in the enoploteuthid squid Abraliopsis sp. B and pineal organs in the myctophid fish Myctophum spinosum) were alternately exposed to overhead light or covered by a small opaque shield above the animal and the bioluminescent response of the animal was monitored. Covering either the eyes or the extraocular photoreceptors resulted in a reduction in the intensity of counterillumination. Preliminary experiments examining the bioluminescent feedback mechanism for monitoring intensity of bioluminescence during counterillumination in the midwater squid Abralia trigonura indicated that the ventral photosensitive vesicles are responsible for bioluminescent feedback.  相似文献   

9.
In a shallow coastal region of Sardinia (European Mediterranean Sea) the activity pattern and migration habits of the sea star Astropecten aranciacus were studied by means of SCUBA diving. The species is nocturanl, with two modes of abundance. Different size classes revealed different activity schedules. A sample taken at dusk consisted of comparatively large-sized sea stars, while another sample taken at night included small-sized sea stars with the larger individuals. By tagging the sea stars with numbers, their locomotory activity during the night, as well as day, was investigated.  相似文献   

10.
The predatory behavior of 74 Pacific electric rays (Torpedo californica), studied between August and December during 1988 through 1991 in situ off the Palos Verdes Peninsula, southern California, consisted of two feeding modes: an ambush from the substratum during the day and a more vigorous attack from the water column at night. Predatory motor patterns and electric organ discharges (EODs) were recorded on the video and audio channels of a housed camcorder. Predatory motor patterns included four phases: (1) jump (simultaneous with EOD initiation), (2) pectoral-fin cupping, (3) orientation to prey, and (4) ingestion. The initial electrical activity of the rays was a train of 46 to 414 5-ms monophasic EODs that lasted 0.45 to 7.06 s; the maximum number of EODs produced during an attack was >1200. Maximum output, measured on only one ray, was 45 V. Fifty-five rays were presented one of four types of prey stimuli: live fish (LF), freshly-speared fish (FSF), frozen fish (FF), or a simulated bioelectric field (SBF). The percent frequency of attacks for the LF, FSF, and FF treatments ranged from 70 to >90%, but was <30% for the SBF. The interval between prey presentation and attack was 30 s for the LF, FSF, and FF and over five times longer for the SBF; intervals averaged <4 s for the three rays tested at night. Attacks by rays on energized electrodes provide the first evidence that electric rays use electroreceptors to detect their prey. However, the lack of clear differences among the four prey treatments in five characteristics of the initial pulse train suggests that a suite of sensory stimuli cooperate in triggering an attack and regulating the electrical output during the attack.  相似文献   

11.
Estimates were made of the predation rate upon eggs of walleye pollock (Theragra chalcogramma) in Shelikof Strait in the western Gulf of Alaska by midwater and near-bottom fish and invertebrate predators during April 1990. Adult and juvenile walleye pollock were the dominant (99% of total abundance) planktivores collected in midwater samples. Based on visual inspection of stomach contents, a high percentage of the sampled fish were found to have consumed pollock eggs. Daily egg consumption by older age groups of walleye pollock was estimated to be <1% of the eggs available at all sampling locations. The only other fishes found to consume pollock eggs were flatfishes collected in bottom trawls but their abundances and egg consumption were very low. Gammarid and hyperiid amphipods were important invertebrate predators on eggs in the water column, as determined by immunoassays using antibodies developed specifically to ascertain the presence of pollock egg-yolk protein. Decapod shrimp showed a high proportion of positive assays in near-bottom collections. Invertebrate predators may have consumed up to 4% of the total number of eggs available in the water column, but <1% of the total near the bottom on a daily basis. Although we were not able to account for the entire daily egg mortality estimated for this stock, our method of using a combination of techniques is promising in terms of future attempts at estimating total predation mortality.  相似文献   

12.
Abstract: Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one‐quarter to one‐third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea‐dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity‐based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.  相似文献   

13.
Activities of fishermen in the Bay of La Paz, B. C. S. are focused to satisfy the local demand of fish and shellfish by using approximately 300 small outboard crafts equipped with gillnets.Sea lions in this Bay attack the fishes captured damaging both product and gear. We did experimental gillnet throws to determine the frequency and preferences of sea lions in fishing areas. 52 experimental gillnet throws with time averages of 2 hr were performed, rending an average of 30 kg of fish captured and less than 10% of damages to the net.. Traditional fishermen in this Bay usually left the net the whole night, (approximately 7.50 hr, obtaining an average of 50 kg of captured fish, but the damages to the nets is in average of 40%. The cost-benefit balance comparing our alternative fishing method, which includes the use of the gillnets during the afternoon, watching for sea lions and retiring the nets at their arrival, it is more sustainable and profitable than the traditional fishing method currently used by the local fishermen. This paper suggests how to minimize the harmful effects of the sea lions on the fishermen productivity and gear, maximizing the production and reducing the damage. Our alternative method is applicable to other regions where this harmful interaction is taking place. We conclude that the coexistence of sea lions-fisheries is feasible, by applying the simple measures that we propose.  相似文献   

14.
Diurnal changes in abundance caused by vertical migrations have been examined in populations of copepods, ostracods, euphausiids, amphipods, decapods, chaetognaths, siphonophores and fish. The animals were taken in a series of hauls made over a 24 h period with an opening-closing midwater trawl system (RMT 1+8), consisting of a net of 1 m2 mouth area combined in the same frame as one of 8 m2 mouth area. The samples were taken at 250 m depth in a position 30°N; 23°W on 7/8 April 1972. The specific composition of the community and the numbers of individuals changed continuously with time. The numbers of fish, decapods and chaetognaths increased at night, but those of copepods, ostracods and euphausiids decreased. More species of fish, decapods and copepods were present by night than by day, whereas the numbers of species per haul for other groups remained fairly constant. The relative abundances of groups caught by the RMT 1 have been analysed, but similar treatment of the RMT 8 samples was impossible as only 3 groups were taken from this net. Non-migrants were a minority in every group except chaetognaths. Migrant species have been put into one of 6 transitory categories according to their patterns of abundance and hence migrations. Within each category, migratory behaviour varied both inter- and intraspecifically. The patterns of abundance of many species were smooth and continuous, suggesting slow migratory cycles of small amplitude. Conversely, extensive migrants had discontinuous patterns and presumably more rapid movements. Few migrants had a steady numerical plateau between their upward and downward migrations, and most apparently moved up or down continuously. The presence of migratory species in the sampled layer depended upon the time of day or night. It is concluded that, in a vertical series of hauls, the depths of occurrence of migrants will vary with the sampling time. Further-more, a vertical series will show a species minimum migration range but not necessarily its maximum. Individuals of some species were out of phase with the migrations of their main populations. There is evidence that the distributions and migrations of some species of decapods, euphausiids, copepods and fish could be related to the distribution of underwater light. Three pairs of congeneric copepod species were both spatially and temporally segregated for at least part of their diurnal cycles. Such an orderly arrangement could provide a means of reducing competition between species. Some species, however, overtook others on their migrations and the pattern of underwater light cannot, therefore, regulate the distribution of all species in the same way.  相似文献   

15.
Under the general heading of symbiosis, defined originally to mean a living together of two dissimilar species, exist the sub-categories of mutualism (where both partners benefit), commensalism (where one partner benefits and the other is neutral) and parasitism (where one partner benefits and the other is harmed). The sea anemone-fish (mainly of the genus Amphiprion) symbiosis has generally been considered to benefit only the fish, and thus has been called commensal in nature. Recent field and laboratory observations, however, suggest that this symbiosis more closely approaches mutualism in which both partners benefit to some degree. The fishes benefit by receiving protection from predators among the nematocyst-laden tentacles of the sea anemone host, perhaps by receiving some form of tactile stimulation, by being less susceptible to various diseases and by feeding on anemone tissue, prey, waste material and perhaps crustacean symbionts. The sea anemones benefit by receiving protection from various predators, removal of necrotic tissue, perhaps some form of tactile stimulation, removal of inorganic and organic material from on and around the anemone, possible removal of anemone parasites, and by being provided food by some species of Amphiprion.  相似文献   

16.
Abstract: A sea cage, sometimes referred to as a net pen, is an enclosure designed to prevent farm fish from escaping and to protect them from large predators, while allowing a free flow of water through the cage to carry away waste. Farm fish thus share water with wild fish, which enables transmission of parasites, such as sea lice, from wild to farm and farm to wild fishes. Sea lice epidemics, together with recently documented population‐level declines of wild salmon in areas of sea‐cage farming, are a reminder that sea‐cage aquaculture is fundamentally different from terrestrial animal culture. The difference is that sea cages protect farm fish from the usual pathogen‐control mechanisms of nature, such as predators, but not from the pathogens themselves. A sea cage thus becomes an unintended pathogen factory. Basic physical theory explains why sea‐cage aquaculture causes sea lice on sympatric wild fish to increase and why increased lice burdens cause wild fish to decline, with extirpation as a real possibility. Theory is important to this issue because slow declines of wild fish can be difficult to detect amid large fluctuations from other causes. The important theoretical concepts are equilibrium, host‐density effect, reservoir‐host effect, and critical stocking level of farmed fish (stocking level at which lice proliferate on farm fish even if wild fish are not present to infect them). I explored these concepts and their implications without mathematics through examples from salmon farming. I also considered whether the lice‐control techniques used by sea‐cage farmers (medication and shortened grow‐out times) are capable of protecting wild fish. Elementary probability showed that (where W is the abundance of wild fish, W* is the prefarm abundance, F is the abundance of farm fish, and is the ratio of lice per farm fish to lice per wild fish). Declines of wild fish can be reduced by short growing cycles for farm fish, medicating farm fish, and keeping farm stocking levels low. Declines can be avoided only by ensuring that wild fish do not share water with farmed fish, either by locating sea cages very far from wild fish or through the use of closed‐containment aquaculture systems. These principles are likely to govern any aquaculture system where cage‐protected farm hosts and sympatric wild hosts have a common parasite with a direct life cycle.  相似文献   

17.
Under stressful conditions (e.g. finding themselves on dry or moisture-saturated substrates) littoral talitrids (Crustacea, Amphipoda) demonstrate zonal orientation, in which they must promptly reach the optimal zone of the beach, the wet fringe near the shoreline. A relationship might therefore exist between the use of orientation and the frequency of such stressful conditions in the natural environment. Moreover, the efficiency of orientation toward the sea could be related to the possibility of using strategies other than zonal orientation in order to avoid stress. This study analysed the actual use and efficiency of orientation under natural conditions of four Talitrus saltator (Montagu, 1808) populations from Mediterranean and northern European Atlantic coasts with different ecological features. Orientation tests were carried out on the beach with all natural cues available. Then the same individuals underwent control experiments to study their sun orientation far from the sea in an experimental arena. The following results emerge from the comparison of the circular distributions: (1) marked differences among populations in the precision of zonal recovery under natural conditions; (2) a common solar orientation capacity in the control tests far from the sea; (3) different orientation choices of the same individuals according to the test conditions, natural or controlled. The habitat diversity of the four populations (amount, distribution and kind of detritus and wrack on the beach, degree of coastal erosion, orientation of the shoreline, human use of the beach) provides an ecological interpretation for the differences in orientation observed among populations. Received: 13 October 1997 / Accepted after revision: 26 April 1998  相似文献   

18.
During a study of midwater fish feeding in the oligotrophic North Pacific gyre in August 1978, nine specimens of a tropical-subtropical myctophid, Ceratoscopelus warmingii, were found to have been feeding on mats of diatoms, Rhizosolenia spp. Chemical analyses of the intestinal contents of several additional specimens showed significantly elevated levels of diatom degradation products. Therefore, C. warmingii, although known to feed on zooplankton, appears to be adapted for occasional herbivory. Such an adaptation is exceptional within a major ecological group of oceanic fishes that was previously thought to be exclusively carnivorous. Like omnivorous and herbivorous fishes in general, C. warmingii has a longer intestine than other myctophid species. As an adaptive response to competition from a diverse fish fauna in a low-productivity environment, occasional herbivory by C. warmingii runs counter to the theoretical expectation by expanding rather than narrowing the range of potential food types.  相似文献   

19.
Many symbioses involve multiple partners in complex, multi-level associations, yet little is known concerning patterns of nutrient transfer in multi-level marine mutualisms. We used the anemonefish symbiosis as a model system to create a balance sheet for nitrogen production and transfer within a three-way symbiotic system. We quantified diel patterns in excretion of ammonia by anemonefish and subsequent absorption by host sea anemones and zooxanthellae under laboratory conditions. Rates of ammonia excretion by the anemonefish Amphiprion bicinctus varied from a high of 1.84 μmole g−1 h−1 at 2 h after feeding, to a basal rate of 0.50 μmole g−1 h−1 at 24–36 h since the last meal. Conversely, host sea anemones Entacmaea quadricolor absorbed ammonia at a rate of 0.10 μmole g−1 h−1 during the daytime in ammonia-enriched seawater, but during the night reduced their absorption rate to near zero, indicating that ammonia uptake was driven by zooxanthella photosynthesis. When incubated together, net ammonia excretion was virturally zero, indicating that host anemones absorbed most of the ammonia produced by resident fish. Adult anemonefish weighed about 11 g under laboratory conditions, but on the coral reef may reach up to 64 g, resulting in a maximal potential ammonia load of >200 μmole h−1 produced by two adult fish during daylight hours. In contrast, host sea anemones weighed about 47 g in the laboratory, but under field conditions, large individuals may reach 680 g, so their maximal ammonia clearance rates may reach about 70 μmole h−1 during the daytime. As such, the ammonia load produced by adult anemonefish far exceeds the clearance rate of host anemones and zooxanthellae. Ammonia transfer likely occurs mainly during the daytime, when anemonefish consume zooplankton and excrete rapidly, and in turn the zooxanthellae are photosynthetically active and drive rapid ammonia uptake. We conclude that zooplanktivorous fishes that form mutualisms with coral reef cnidarians may serve as an important link between open water and benthic ecosystems, through the transfer of large quantities of nutrients to zooxanthellate hosts, thus enhancing coral reef productivity.  相似文献   

20.
A detailed investigation of a small area of sea bed occupied by the Norway lobster Nephrops norvegicus (L.) was carried out by diving and television observations at depths of 30 m in Loch Torridon, Scotland. The density of burrows was 1/2 m2, but only a proportion of these were occupied by N. norvegicus. Although about 70% of the larger burrows were occupied by N. norvegicus, giving a density of 1 lobster/8 m2, very few juveniles (carapace length less than 30 mm) were found in the area. Many of the small burrows were occupied by the gobiid fish Lesueurigobius friesii (Collett). There was evidence that N. norvegicus frequently change their burrows, and fighting for burrows was observed. N. norvegicus remain within their burrows during the day, emerge around sunset to forage for food during the night, and then return to their burrows at dawn. This, and other aspects of their burrowing behaviour, have a marked effect on the commercial trawl catches of N. norvegicus which show large seasonal and diurnal variations in size and sex composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号