首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation Planning as a Transdisciplinary Process   总被引:1,自引:0,他引:1  
Abstract: Despite substantial growth in the field of conservation planning, the speed and success with which conservation plans are converted into conservation action remains limited. This gap between science and action extends beyond conservation planning into many other applied sciences and has been linked to complexity of current societal problems, compartmentalization of knowledge and management sectors, and limited collaboration between scientists and decision makers. Transdisciplinary approaches have been proposed as a possible way to address these challenges and to bridge the gap between science and action. These approaches move beyond the bridging of disciplines to an approach in which science becomes a social process resolving problems through the participation and mutual learning of stakeholders. We explored the principles of transdisciplinarity, in light of our experiences as conservation‐planning researchers working in South Africa, to better understand what is required to make conservation planning transdisciplinary and therefore more effective. Using the transdisciplinary hierarchy of knowledge (empirical, pragmatic, normative, and purposive), we found that conservation planning has succeeded in integrating many empirical disciplines into the pragmatic stakeholder‐engaged process of strategy development and implementation. Nevertheless, challenges remain in engagement of the social sciences and in understanding the social context of implementation. Farther up this knowledge hierarchy, at the normative and purposive levels, we found that a lack of integrated land‐use planning and policies (normative) and the dominant effect of national values (purposive) that prioritize growth and development limit the effectiveness and relevance of conservation plans. The transdisciplinary hierarchy of knowledge highlighted that we need to move beyond bridging the empirical and pragmatic disciplines into the complex normative world of laws, policies, and planning and become engaged in the purposive processes of decision making, behavior change, and value transfer. Although there are indications of progress in this direction, working at the normative and purposive levels requires time, leadership, resources, skills that are absent in conservation training and practice, and new forms of recognition in systems of scientific reward and funding.  相似文献   

2.
Millions of children visit zoos every year with parents or schools to encounter wildlife firsthand. Public conservation education is a requirement for membership in professional zoo associations. However, in recent years zoos have been criticized for failing to educate the public on conservation issues and related biological concepts, such as animal adaptation to habitats. I used matched pre‐ and postvisit mixed methods questionnaires to investigate the educational value of zoo visits for children aged 7–15 years. The questionnaires gathered qualitative data from these individuals, including zoo‐related thoughts and an annotated drawing of a habitat. A content analysis of these qualitative data produced the quantitative data reported in this article. I evaluated the relative learning outcomes of educator‐guided and unguided zoo visits at London Zoo, both in terms of learning about conservation biology (measured by annotated drawings) and changing attitudes toward wildlife conservation (measured using thought‐listing data). Forty‐one percent of educator‐guided visits and 34% of unguided visits resulted in conservation biology‐related learning. Negative changes in children's understanding of animals and their habitats were more prevalent in unguided zoo visits. Overall, my results show the potential educational value of visiting zoos for children. However, they also suggest that zoos’ standard unguided interpretive materials are insufficient for achieving the best outcomes for visiting children. These results support a theoretical model of conservation biology learning that frames conservation educators as toolmakers who develop conceptual resources to enhance children's understanding of science. Evaluación del Aprendizaje de Biología de la Conservación por Niños en el Zoológico Jensen  相似文献   

3.
Abstract: The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science–policy interface. Similarly, boundary organizations—organizations or institutions that bridge different scales or mediate the relationship between science and policy—could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.  相似文献   

4.
Abstract: Funding for conservation is limited, and its investment for maximum conservation gain can likely be enhanced through the application of relevant science. Many donor institutions support and use science to pursue conservation goals, but their activities remain relatively unfamiliar to the conservation‐science community. We examined the priorities and practices of U.S.‐based private foundations that support biodiversity conservation. We surveyed 50 donor members of the Consultative Group on Biological Diversity (CGBD) to address three questions: (1) What support do CGBD members provide for conservation science? (2) How do CGBD members use conservation science in their grant making and strategic thinking? (3) How do CGBD members obtain information about conservation science? The 38 donor institutions that responded to the survey made $340 million in grants for conservation in 2005, including $62 million for conservation science. Individual foundations varied substantially in the proportion of conservation funds allocated to science. Foundations also varied in the ways and degree to which they used conservation science to guide their grant making. Respondents found it “somewhat difficult” to stay informed about conservation science relevant to their work, reporting that they accessed conservation science information mainly through their grantees. Many funders reported concerns about the strategic utility of funding conservation science to achieve conservation gains. To increase investment by private foundations in conservation science, funders, researchers, and conservation practitioners need to jointly identify when and how new scientific knowledge will lower barriers to conservation gains. We envision an evolving relationship between funders and conservation scientists that emphasizes primary research and synthesis motivated by (1) applicability, (2) human‐ecosystem interactions, (3) active engagement among scientists and decision makers, and (4) broader communication of relevant scientific information.  相似文献   

5.
There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management‐relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence‐based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research‐focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary‐spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge–action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which both advances scientific understanding and contributes to decision making. Logrando que la Ciencia de la Conservación Trasponga la Frontera Conocimiento‐Acción  相似文献   

6.
Abstract: Conservation scientists are concerned about the apparent lack of impact their research is having on policy. By better aligning research with policy needs, conservation science might become more relevant to policy and increase its real‐world salience in the conservation of biological diversity. Consequently, some conservation scientists have embarked on a variety of exercises to identify research questions that, if answered, would provide the evidence base with which to develop and implement effective conservation policies. I synthesized two existing approaches to conceptualizing research impacts. One widely used approach classifies the impacts of research as conceptual, instrumental, and symbolic. Conceptual impacts occur when policy makers are sensitized to new issues and change their beliefs or thinking. Instrumental impacts arise when scientific research has a direct effect on policy decisions. The use of scientific research results to support established policy positions are symbolic impacts. The second approach classifies research issues according to whether scientific knowledge is developed fully and whether the policy issue has been articulated clearly. I believe exercises to identify important research questions have objectives of increasing the clarity of policy issues while strengthening science–policy interactions. This may facilitate the transmission of scientific knowledge to policy makers and, potentially, accelerate the development and implementation of effective conservation policy. Other, similar types of exercises might also be useful. For example, identification of visionary science questions independent of current policy needs, prioritization of best practices for transferring scientific knowledge to policy makers, and identification of questions about human values and their role in political processes could all help advance real‐world conservation science. It is crucial for conservation scientists to understand the wide variety of ways in which their research can affect policy and be improved systematically.  相似文献   

7.
A vast number of prioritization schemes have been developed to help conservation navigate tough decisions about the allocation of finite resources. However, the application of quantitative approaches to setting priorities in conservation frequently includes mistakes that can undermine their authors’ intention to be more rigorous and scientific in the way priorities are established and resources allocated. Drawing on well‐established principles of decision science, we highlight 6 mistakes commonly associated with setting priorities for conservation: not acknowledging conservation plans are prioritizations; trying to solve an ill‐defined problem; not prioritizing actions; arbitrariness; hidden value judgments; and not acknowledging risk of failure. We explain these mistakes and offer a path to help conservation planners avoid making the same mistakes in future prioritizations. Seis Errores Comunes en la Definición de Prioridades de Conservación  相似文献   

8.
Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual‐based learning, stresses collaborative and generative insight making and is well‐suited for adaptive management. Adaptive‐management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real‐time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case‐study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy‐in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning.  相似文献   

9.
Despite decades of discussion and implementation, conservation monitoring remains a challenge. Many current solutions in the literature focus on improving the science or making more structured decisions. These insights are important but incomplete in accounting for the politics and economics of the conservation decisions informed by monitoring. Our novel depiction of the monitoring enterprise unifies insights from multiple disciplines (conservation, operations research, economics, and policy) and highlights many underappreciated factors that affect the expected benefits of monitoring. For example, there must be a strong link between the specific needs of decision makers and information gathering. Furthermore, the involvement of stakeholders other than scientists and research managers means that new information may not be interpreted and acted upon as expected. While answering calls for sharply delineated objectives will clearly add focus to monitoring efforts, for practical reasons, high‐level goals may purposefully be left vague, to facilitate other necessary steps in the policy process. We use the expanded depiction of the monitoring process to highlight problems of cooperation and conflict. We critique calls to invest in monitoring for the greater good by arguing that incentives are typically lacking. Although the benefits of learning accrued within a project (e.g., improving management) provide incentives for investing in some monitoring, it is unrealistic, in general, to expect managers to add potentially costly measures to generate shared benefits. In the traditional linear model of the role of science in policy decisions, monitoring reduces uncertainty and decision makers are rational, unbiased consumers of the science. However, conservation actions increasingly involve social conflict. Drawing insights from political science, we argue that in high‐conflict situations, it is necessary to address the conflict prior to monitoring. Las Inversiones y el Proceso de Políticas en el Monitoreo de la Conservación Sanchirico et al.  相似文献   

10.
The knowledge produced by conservation scientists must be actionable in order to address urgent conservation challenges. To understand the process of creating actionable science, we interviewed 71 conservation scientists who had participated in 1 of 3 fellowship programs focused on training scientists to become agents of change. Using a grounded theory approach, we identified 16 activities that these researchers employed to make their scientific products more actionable. Some activities were more common than others and, arguably, more foundational. We organized these activities into 3 nested categories (motivations, strategies, and tactics). Using a co-occurrence matrix, we found that most activities were positively correlated. These correlations allowed us to identify 5 approaches, framed as profiles, to actionable science: the discloser, focused on open access; the educator, focused on science communication; the networker, focused on user needs and building relationships; the collaborator, focused on boundary spanning; and the pluralist, focused on knowledge coproduction resulting in valuable outcomes for all parties. These profiles build on one another in a hierarchy determined by their complexity and level of engagement, their potential to support actionable science, and their proximity to ideal coproduction with knowledge users. Our results provide clear guidance for conservation scientists to generate actionable science to address the global biodiversity conservation challenge.  相似文献   

11.
Conservation science needs to engage the general public to ensure successful conservation interventions. Although online technologies such as Twitter and Facebook offer new opportunities to accelerate communication between conservation scientists and the online public, factors influencing the spread of conservation news in online media are not well understood. We explored transmission of conservation research through online news articles with generalized linear mixed‐effects models and an information theoretic approach. In particular, we assessed differences in the frequency conservation research is featured on online news sites and the impact of online conservation news content and delivery on Facebook likes and shares and Twitter tweets. Five percent of articles in conservation journals are reported in online news, and the probability of reporting depended on the journal. There was weak evidence that articles on climate change and mammals were more likely to be featured. Online news articles about charismatic mammals with illustrations were more likely to be shared or liked on Facebook and Twitter, but the effect of news sites was much larger. These results suggest journals have the greatest impact on which conservation research is featured and that news site has the greatest impact on how popular an online article will be on Facebook and Twitter. Cuantificación del Papel de las Noticias En Línea en el Enlazamiento de la Investigación para la Conservación con Facebook y Twitter  相似文献   

12.
Scholars across all disciplines have long been interested in how knowledge moves within and beyond their community of peers. Rapid environmental changes and calls for sustainable management practices mean the best knowledge possible is needed to inform decisions, policies, and practices to protect biodiversity and sustainably manage vulnerable natural resources. Although the conservation literature on knowledge exchange (KE) and knowledge mobilization (KM) has grown in recent years, much of it is based on context‐specific case studies. This presents a challenge for learning cumulative lessons from KE and KM research and thus effectively using knowledge in conservation and natural resources management. Although continued research on the gap between knowledge and action is valuable, overarching conceptual frameworks are now needed to enable summaries and comparisons across diverse KE‐KM research. We propose a knowledge‐action framework that provides a conceptual roadmap for future research and practice in KE/KM with the aim of synthesizing lessons learned from contextual case studies and guiding the development and testing of hypotheses in this domain. Our knowledge‐action framework has 3 elements that occur at multiple levels and scales: knowledge production (e.g., academia and government), knowledge mediation (e.g., knowledge networks, actors, relational dimension, and contextual dimension), and knowledge‐based action (e.g., instrumental, symbolic, and conceptual). The framework integrates concepts from the sociology of science in particular, and serves as a guide to further comprehensive understanding of knowledge exchange and mobilization in conservation and sustainable natural resource management.  相似文献   

13.
In systematic conservation planning, species distribution data for all sites in a planning area are used to prioritize each site in terms of the site's importance toward meeting the goal of species representation. But comprehensive species data are not available in most planning areas and would be expensive to acquire. As a shortcut, ecologists use surrogates, such as occurrences of birds or another well‐surveyed taxon, or land types defined from remotely sensed data, in the hope that sites that represent the surrogates also represent biodiversity. Unfortunately, surrogates have not performed reliably. We propose a new type of surrogate, predicted importance, that can be developed from species data for a q% subset of sites. With species data from this subset of sites, importance can be modeled as a function of abiotic variables available at no charge for all terrestrial areas on Earth. Predicted importance can then be used as a surrogate to prioritize all sites. We tested this surrogate with 8 sets of species data. For each data set, we used a q% subset of sites to model importance as a function of abiotic variables, used the resulting function to predict importance for all sites, and evaluated the number of species in the sites with highest predicted importance. Sites with the highest predicted importance represented species efficiently for all data sets when q = 25% and for 7 of 8 data sets when q = 20%. Predicted importance requires less survey effort than direct selection for species representation and meets representation goals well compared with other surrogates currently in use. This less expensive surrogate may be useful in those areas of the world that need it most, namely tropical regions with the highest biodiversity, greatest biodiversity loss, most severe lack of inventory data, and poorly developed protected area networks.  相似文献   

14.
There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no‐development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument Importancia de la Especificación de Línea de Base en la Evaluación de Intervenciones de Conservación y la Obtención de Ninguna Pérdida Neta de la Biodiversidad  相似文献   

15.
Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty‐one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within‐ and across‐taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. Selección de Múltiples Especies Paraguas para la Diversidad Funcional y Taxonómica para Representar la Biodiversidad Urbana  相似文献   

16.
Abstract: Debate on the values that underpin conservation science is rarely based on empirical analysis of the values conservation professionals actually hold. We used Q methodology to investigate the values held by international conservation professionals who attended the annual Student Conference in Conservation Science at the University of Cambridge (U.K.) in 2008 and 2009. The methodology offers a quantitative means of examining human subjectivity. It differs from standard opinion surveys in that individual respondents record the way they feel about statements relative to other statements, which forces them to focus their attention on the issues they believe are most important. The analysis extracts the diverse viewpoints of the respondents, and factor analysis is used to reduce the viewpoints to a smaller set of factors that reflect shared ways of thinking. The junior conservation professionals attending the conference did not share a unifying set of core values; rather, they held a complex series of ideas and a plurality of opinions about conservation and how it should be pursued. This diversity of values empirically challenges recent proposals for conservation professionals to unite behind a single philosophy. Attempts to forge an artificial consensus may be counterproductive to the overall goals conservation professionals are pursuing.  相似文献   

17.
Despite broad recognition of the value of social sciences and increasingly vocal calls for better engagement with the human element of conservation, the conservation social sciences remain misunderstood and underutilized in practice. The conservation social sciences can provide unique and important contributions to society's understanding of the relationships between humans and nature and to improving conservation practice and outcomes. There are 4 barriers—ideological, institutional, knowledge, and capacity—to meaningful integration of the social sciences into conservation. We provide practical guidance on overcoming these barriers to mainstream the social sciences in conservation science, practice, and policy. Broadly, we recommend fostering knowledge on the scope and contributions of the social sciences to conservation, including social scientists from the inception of interdisciplinary research projects, incorporating social science research and insights during all stages of conservation planning and implementation, building social science capacity at all scales in conservation organizations and agencies, and promoting engagement with the social sciences in and through global conservation policy‐influencing organizations. Conservation social scientists, too, need to be willing to engage with natural science knowledge and to communicate insights and recommendations clearly. We urge the conservation community to move beyond superficial engagement with the conservation social sciences. A more inclusive and integrative conservation science—one that includes the natural and social sciences—will enable more ecologically effective and socially just conservation. Better collaboration among social scientists, natural scientists, practitioners, and policy makers will facilitate a renewed and more robust conservation. Mainstreaming the conservation social sciences will facilitate the uptake of the full range of insights and contributions from these fields into conservation policy and practice.  相似文献   

18.
Urban ecology is emerging as an integrative science that explores the interactions of people and biodiversity in cities. Interdisciplinary research requires the creation of new tools that allow the investigation of relations between people and biodiversity. It has been established that access to green spaces or nature benefits city dwellers, but the role of species diversity in providing psychological benefits remains poorly studied. We developed a user‐friendly 3‐dimensional computer program (Virtual Garden [ www.tinyurl.com/3DVirtualGarden ]) that allows people to design their own public or private green spaces with 95 biotic and abiotic features. Virtual Garden allows researchers to explore what elements of biodiversity people would like to have in their nearby green spaces while accounting for other functions that people value in urban green spaces. In 2011, 732 participants used our Virtual Garden program to design their ideal small public garden. On average gardens contained 5 different animals, 8 flowers, and 5 woody plant species. Although the mathematical distribution of flower and woody plant richness (i.e., number of species per garden) appeared to be similar to what would be expected by random selection of features, 30% of participants did not place any animal species in their gardens. Among those who placed animals in their gardens, 94% selected colorful species (e.g., ladybug [Coccinella septempunctata], Great Tit [Parus major], and goldfish), 53% selected herptiles or large mammals, and 67% selected non‐native species. Older participants with a higher level of education and participants with a greater concern for nature designed gardens with relatively higher species richness and more native species. If cities are to be planned for the mutual benefit of people and biodiversity and to provide people meaningful experiences with urban nature, it is important to investigate people's relations with biodiversity further. Virtual Garden offers a standardized tool with which to explore these relations in different environments, cultures, and countries. It can also be used by stakeholders (e.g., city planners) to consider people's opinions of local design. Programa de Computadora de Jardín Virtual para Uso en la Exploración de los Elementos de Biodiversidad que la Gente Desea en las Ciudades  相似文献   

19.
Geodiversity has been used as a surrogate for biodiversity when species locations are unknown, and this utility can be extended to situations where species locations are in flux. Recently, scientists have designed conservation networks that aim to explicitly represent the range of geophysical environments, identifying a network of physical stages that could sustain biodiversity while allowing for change in species composition in response to climate change. Because there is no standard approach to designing such networks, we compiled 8 case studies illustrating a variety of ways scientists have approached the challenge. These studies show how geodiversity has been partitioned and used to develop site portfolios and connectivity designs; how geodiversity‐based portfolios compare with those derived from species and communities; and how the selection and combination of variables influences the results. Collectively, they suggest 4 key steps when using geodiversity to augment traditional biodiversity‐based conservation planning: create land units from species‐relevant variables combined in an ecologically meaningful way; represent land units in a logical spatial configuration and integrate with species locations when possible; apply selection criteria to individual sites to ensure they are appropriate for conservation; and develop connectivity among sites to maintain movements and processes. With these considerations, conservationists can design more effective site portfolios to ensure the lasting conservation of biodiversity under a changing climate.  相似文献   

20.
Compensating for biodiversity losses in 1 location by conserving or restoring biodiversity elsewhere (i.e., biodiversity offsetting) is being used increasingly to compensate for biodiversity losses resulting from development. We considered whether a form of biodiversity offsetting, enhancement offsetting (i.e., enhancing the quality of degraded natural habitats through intensive ecological management), can realistically secure additional funding to control biological invaders at a scale and duration that results in enhanced biodiversity outcomes. We suggest that biodiversity offsetting has the potential to enhance biodiversity values through funding of invasive species control, but it needs to meet 7 key conditions: be technically possible to reduce invasive species to levels that enhance native biodiversity; be affordable; be sufficiently large to compensate for the impact; be adaptable to accommodate new strategic and tactical developments while not compromising biodiversity outcomes; acknowledge uncertainties associated with managing pests; be based on an explicit risk assessment that identifies the cost of not achieving target outcomes; and include financial mechanisms to provide for in‐perpetuity funding. The challenge then for conservation practitioners, advocates, and policy makers is to develop frameworks that allow for durable and effective partnerships with developers to realize the full potential of enhancement offsets, which will require a shift away from traditional preservation‐focused approaches to biodiversity management. El Potencial de la Compensación de la Biodiversidad para Financiar Controles Efectivos de Especies Invasoras  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号