首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium‐ to large‐bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old‐growth forest. Hunting was a more serious long‐term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species‐specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems. Correlación y Persistencia de los Impactos de la Caza y la Tala sobre los Mamíferos de los Bosques Tropicales  相似文献   

2.
Abstract: Although enhancing reserve shape has been suggested as an alternative to enlarging nature reserves, the importance of reserve shape relative to reserve area remains unclear. Here we examined the relative importance of area and shape of forest patches to species richness, species composition, and species abundance (abundance of each species) for 3 taxa (33 birds, 41 butterflies, and 91 forest‐floor plants) in a fragmented landscape in central Hokkaido, northern Japan. We grouped the species according to their potential edge responses (interior‐, neutral‐, and edge‐species groups for birds and forest‐floor plants, woodland‐ and open‐land‐species groups for butterflies) and analyzed them separately. We used a shape index that was independent of area as an index of shape circularization. Hierarchical partitioning and variation partitioning revealed that patch area was generally more important than patch shape for species richness and species composition of birds and butterflies. For forest‐floor plants, effects of patch area and shape were small, whereas effects of local forest structure were large. Patch area and circularization generally increased abundances of interior species of birds and forest‐floor plants and woodland species of butterflies. Nevertheless, only patch circularization increased abundances of 1 woodland species of butterfly and 2 and 6 interior species of birds and forest‐floor plants, respectively. We did not find any significant interaction effects between patch area and shape. Our results suggest that although reserves generally should be large and circular, there is a trade‐off between patch area and shape, which should be taken into consideration when managing reserves.  相似文献   

3.
The Convention on Biological Diversity (CBD) expects forestry plantations to contribute to biodiversity conservation. A well‐developed understory in forestry plantations might serve as a surrogate habitat for native species and mitigate the negative effect of plantations on species richness. We experimentally tested this hypothesis by removing the understory in Monterey pine (Pinus radiata) plantations in central Chile and assessing changes in species richness and abundance of medium‐sized mammals. Frequency of occurrence of mammals, including kodkods (Leopardus guigna), culpeo foxes (Pseudalopex culpaeus), lesser grisons (Conepatus chinga), and Southern pudu deer (Pudu puda), was low in forest stands with little to no understory relative to stands with well‐developed undergrowth vegetation. After removing the understory, their frequency of occurrence decreased significantly, whereas in control stands, where understory was not removed, their frequency did not change. This result strongly supports the idea that facilitating the development of undergrowth vegetation may turn forestry stands into secondary habitats as opposed to their containing no habitat for native mammals. This forestry practice could contribute to conservation of biological diversity as it pertains to CBD targets. Proporcionando Hábitat para Mamíferos Nativos Mediante el Mejoramiento del Sotobosque en Plantaciones Forestales  相似文献   

4.
Abstract: Biodiversity is too complex to measure directly, so conservation planning must rely on surrogates to estimate the biodiversity of sites. The species richness of selected taxa is often used as a surrogate for the richness of other taxa. Surrogacy values of taxa have been evaluated in diverse contexts, yet broad trends in their effectiveness remain unclear. We reviewed published studies testing the ability of species richness of surrogate taxa to capture the richness of other (target) taxa. We stratified studies into two groups based on whether a complementarity approach (surrogates used to select a combination of sites that together maximize total species richness for the taxon) or a richness‐hotspot approach (surrogates used to select sites containing the highest species richness for the taxon) was used. For each comparison of one surrogate taxon with one target, we used the following predictor variables: biome, spatial extent of study area, surrogate taxon, and target taxon. We developed a binary response variable based on whether the surrogate taxon provided better than random representation of the target taxon. For studies that used an evaluation approach that was not based on better than random representation of target taxa, we based the response variable on the interpretation of results in the original study. We performed a categorical regression to elucidate trends in the effectiveness of surrogate taxa with regard to each of the predictor variables. A surrogate was 25% more likely to be effective with a complementarity approach than with a hotspot approach. For hotspot‐based approaches, biome, extent of study, surrogate taxon, and target taxon significantly influenced effectiveness of the surrogate. For complementarity‐based approaches, biome, extent, and surrogate taxon significantly influenced effectiveness of the surrogate. For all surrogate evaluations, biome explained the greatest amount of variation in surrogate effectiveness. From most to least, extent, surrogate taxon, and target taxon explained the most variation after biome. Surrogate taxa were most effective in grasslands and in some cases boreal zones, deserts, and tropical forests; surrogate taxa also were more effective in studies examining larger areas. Herpetofauna were the most effective taxon as both surrogate and target when a richness‐hotspot approach was used; however, herpetofauna were analyzed in fewer studies, so this result is tentative. For complementarity approaches, taxa that are easy to measure and tend to have a large number of habitat specialists distributed collectively across broad environmental gradients (e.g., plants, birds, and mammals) were the most effective surrogates.  相似文献   

5.
Abstract: Inventories of tree species are often conducted to guide conservation efforts in tropical forests. Such surveys are time consuming, demanding of expertise, and expensive to perform and interpret. Approaches to make survey efforts simpler or more effective would be valuable. In particular, it would be good to be able to easily identify areas of old‐growth forest. The average density of the wood of a tree species is closely linked to its successional status. We used tree inventory data from eastern Borneo to determine whether wood density can be used to quantify forest disturbance and conservation importance. The average density of wood in a plot was significantly and negatively related to disturbance levels, with plots with higher wood densities occurring almost exclusively in old‐growth forests. Average wood density was unimodally related to the diversity of tree species, indicating that the average wood density in a plot might be a better indicator of old‐growth forest than species diversity. In addition, Borneo endemics had significantly heavier wood than species that are common throughout the Malesian region, and they were more common in plots with higher average wood density. We concluded that wood density at the plot level could be a powerful tool for identifying areas of conservation priority in the tropical rain forests of Southeast Asia.  相似文献   

6.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

7.
Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old‐growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta‐analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old‐growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional‐group–specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old‐growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old‐growth values (between 140 years and never for recovery to old‐growth values at 95% prediction limits). Non‐saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old‐growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives.  相似文献   

8.
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800‐ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species‐richness estimates were significantly higher (F= 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30–50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30–50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30–50%). Highly sensitive species were 3‐4 times more common above the 30–50% threshold than below it; however, our results do not support a unique fragmentation threshold. Asociaciones de la Cobertura Forestal, Superficie del Fragmento y Conectividad con la Riqueza y Abundancia de Aves Neotropicales de Sotobosque  相似文献   

9.
Abstract: The effects of human activities in forests are often examined in the context of habitat conversion. Changes in habitat structure and composition are also associated with increases in the activity of people with vehicles and equipment, which results in increases in anthropogenic noise. Anthropogenic noise may reduce habitat quality for many species, particularly those that rely on acoustic signals for communication. We compared the density and occupancy rate of forest passerines close to versus far from noise‐generating compressor stations and noiseless well pads in the boreal forest of Alberta, Canada. Using distance‐based sampling, we found that areas near noiseless energy facilities had a total passerine density 1.5 times higher than areas near noise‐producing energy sites. The White‐throated Sparrow (Zonotrichia albicollis), Yellow‐rumped Warbler (Dendroica coronata), and Red‐eyed Vireo (Vireo olivaceus) were less dense in noisy areas. We used repeat sampling to estimate occupancy rate for 23 additional species. Seven had lower conditional or unconditional occupancy rates near noise‐generating facilities. One‐third of the species examined showed patterns that supported the hypothesis that abundance is influenced by anthropogenic noise. An additional 4 species responded negatively to edge effects. To mitigate existing noise impacts on birds would require approximately $175 million. The merits of such an effort relative to other reclamation actions are discussed. Nevertheless, given the $100 billion energy‐sector investment planned for the boreal forest in the next 10 years, including noise suppression technology at the outset of construction, makes noise mitigation a cost‐effective best‐management practice that might help conserve high‐quality habitat for boreal birds.  相似文献   

10.
There is a lack of quantitative information on the effectiveness of selective‐logging practices in ameliorating effects of logging on faunal communities. We conducted a large‐scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest‐dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance‐tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance‐tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low‐intensity logging (≤3 trees/ha) a minimum 20‐year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. Recuperación de Ensambles de Anfibios en Dos Etapas Después de la Tala Selectiva de Bosques Tropicales  相似文献   

11.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

12.
Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost‐effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape‐scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species‐rich plantings. We investigated whether it is possible to apply a complementarity‐based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity‐based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species‐richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species‐richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site‐scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.  相似文献   

13.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

14.
Habitat loss and degradation are primary threats to amphibians and reptiles, but the relative effects of common land uses on assemblages and the mechanisms that underlie faunal responses are poorly studied. We reviewed the effects of four prevalent types of habitat alteration (urbanization, agriculture, livestock grazing, and silviculture) on amphibian and reptile species richness and abundance by summarizing reported responses in the literature and by estimating effect sizes across studies for species richness in each land‐use type. We then used a multinomial model to classify species as natural habitat specialists, generalists, and disturbed habitat specialists and examined variation in effect sizes for each land‐use type according to habitat specialization categories. There were mixed conclusions from individual studies, some reporting negative, neutral, or positive effects of land use on species richness and total abundance. A large proportion of studies reported species‐specific effects of individual species abundance. However, in our analysis of effect sizes, we found a general trend of negative effects of land use on species richness. We also demonstrate that habitat associations of common species and species turnover can explain variation in the effect of land use on herpetofauna. Our review highlights the pervasive negative effects of common land uses on amphibians and reptiles, the importance of identifying groups vulnerable to land‐use change (e.g., forest‐associated species) in conservation studies, and the potential influence of disturbance‐associated species on whole assemblage analyses.  相似文献   

15.
Abstract: We explored the impact of forest conversion to agricultural mosaic on anuran, lizard, snake, and turtle assemblages of Neotropical dry forests. Over 2 years, we sampled 6 small watersheds on the west coast of Mexico, 3 conserved and 3 disturbed. The disturbed watersheds were characterized by a mosaic of pastures and cultivated fields (corn, beans, squash) intermingled with patches of different successional stages of dry forest. In each watershed, we conducted 11 diurnal and nocturnal time‐constrained searches in 10 randomly established plots. We considered vulnerability traits of species in relation to habitat modification. Eighteen anuran, 18 lizard, 23 snake, and 3 turtle species were recorded. Thirty‐six species (58%) occurred in both forest conditions, and 14 (22%) and 12 species (19%) occurred only in the conserved and disturbed sites, respectively. Assemblages responded differently to disturbance. Species richness, diversity, and abundance of lizards were higher in disturbed forests. Anuran diversity and species richness were lower in disturbed forest but abundance was similar in both forest conditions. Diversity, richness, and abundance of turtles were lower in disturbed forest. The structure and composition of snake assemblages did not differ between forest conditions. We considered species disturbance sensitive if their abundance was significantly less in disturbed areas. Four anuran (22%), 2 lizard (11%), and 3 turtle (100%) species were sensitive to disturbance. No snake species was sensitive. The decline in abundance of disturbance‐sensitive species was associated with the reduction of forest canopy cover, woody stem cover, roots, and litter‐layer ground cover. Anuran species with small body size and direct embryonic development were especially sensitive to forest disturbance. An important goal for the conservation of herpetofauna should be the determination of species traits associated with extinction or persistence in agricultural mosaics.  相似文献   

16.
Abstract: There are few empirical data, particularly collected simultaneously from multiple sites, on extinctions resulting from human‐driven land‐use change. Southeast Asia has the highest deforestation rate in the world, but the resulting losses of biological diversity remain poorly documented. Between November 2006 and March 2008, we conducted bird surveys on six landbridge islands in Malaysia and Indonesia. These islands were surveyed previously for birds in the early 1900s, when they were extensively forested. Our bird inventories of the islands were nearly complete, as indicated by sampling saturation curves and nonparametric true richness estimators. From zero (Pulau Malawali and Pulau Mantanani) to 15 (Pulau Bintan) diurnal resident landbird species were apparently extirpated since the early 1900s. Adding comparable but published extinction data from Singapore to our regression analyses, we found there were proportionally fewer forest bird extinctions in areas with greater remaining forest cover. Nevertheless, the statistical evidence to support this relationship was weak, owing to our unavoidably small sample size. Bird species that are restricted to the Indomalayan region, lay few eggs, are heavier, and occupy a narrower habitat breadth, were most vulnerable to extinction on Pulau Bintan. This was the only island where sufficient data existed to analyze the correlates of extinction. Forest preservation and restoration are needed on these islands to conserve the remaining forest avifauna. Our study of landbridge islands indicates that deforestation may increasingly threaten Southeast Asian biodiversity.  相似文献   

17.
Abstract:  Although species with large area requirements are sometimes used as umbrella species, their general utility as conservation tools is uncertain. We surveyed the species diversity of birds, butterflies, carabids, and forest-floor plants in forest sites across an area (1600 km2) in which we delineated large breeding home ranges of Northern Goshawk ( Accipiter gentilis ). We tested whether protection of the home ranges could serve as an effective umbrella to protect sympatric species of the four taxa. We also used an empirical habitat model of occupancy of home range to examine mechanisms by which the Northern Goshawk acts as an umbrella species. Among species richness, abundance, and species composition of the four taxa, only abundance and species composition of birds differed between sites located inside and outside home ranges, which was due to greater abundance of bird species that were prey of Northern Goshawks inside the home ranges. Thus, although home range indicated areas with high abundance of certain bird prey species, it was not effective as an indicator of the species diversity of all four taxa. We also did not find any difference in species richness, abundance, and species composition between sites predicted as occupied and unoccupied using the habitat model. In contrast, when we selected sites on the basis of each habitat variable in the model, habitat variables that selected sites either in agricultural or forested landscapes encompassed sites with high species richness or particular species composition. This result suggests that the low performance of the Northern Goshawk as an umbrella species is due to this species' preference for habitat in both agricultural and forested landscapes. Species that can adjust to changes in habitat conditions may not act as effective umbrella species despite having large home ranges.  相似文献   

18.
In International Union for Conservation of Nature (IUCN) Red List assessments, extent of occurrence (EOO) is a key measure of extinction risk. However, the way assessors estimate EOO from maps of species’ distributions is inconsistent among assessments of different species and among major taxonomic groups. Assessors often estimate EOO from the area of mapped distribution, but these maps often exclude areas that are not habitat in idiosyncratic ways and are not created at the same spatial resolutions. We assessed the impact on extinction risk categories of applying different methods (minimum convex polygon, alpha hull) for estimating EOO for 21,763 species of mammals, birds, and amphibians. Overall, the percentage of threatened species requiring down listing to a lower category of threat (taking into account other Red List criteria under which they qualified) spanned 11–13% for all species combined (14–15% for mammals, 7–8% for birds, and 12–15% for amphibians). These down listings resulted from larger estimates of EOO and depended on the EOO calculation method. Using birds as an example, we found that 14% of threatened and near threatened species could require down listing based on the minimum convex polygon (MCP) approach, an approach that is now recommended by IUCN. Other metrics (such as alpha hull) had marginally smaller impacts. Our results suggest that uniformly applying the MCP approach may lead to a one‐time down listing of hundreds of species but ultimately ensure consistency across assessments and realign the calculation of EOO with the theoretical basis on which the metric was founded.  相似文献   

19.
Abstract: Little is known about the effects of anthropogenic land‐use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land‐use modification gradient stretching from primary forest, secondary forest, natural‐shade cacao agroforest, planted‐shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land‐use modification gradient, but reptile richness and abundance peaked in natural‐shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf‐litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long‐term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.  相似文献   

20.
Recovery of Faunal Communities During Tropical Forest Regeneration   总被引:14,自引:0,他引:14  
Abstract:  As mature tropical forests are cleared, secondary forests may play an important role in the conservation of animal species, depending on how fast animal communities recover during forest regeneration. I reviewed published studies on the recovery of animal species richness and composition during tropical forest regeneration. In 38 of the 39 data sets I examined, conversion of forest to agriculture or pasture substantially reduced species richness. Given suitable conditions for forest recovery, the species richness of the animal taxa considered can be predicted to resemble that of mature forests roughly 20–40 years after land abandonment. At least for ants and birds, however, recovery of species composition appears to take substantially longer than recovery of species richness. Because species richness for many taxa appears to recover relatively rapidly in secondary forests, conservation of secondary forests may be an effective investment in future diversity. The slower recovery of species composition indicates, however, that some species will require stands of mature forest to persist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号